IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i5d10.1007_s11269-015-1191-8.html
   My bibliography  Save this article

Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems

Author

Listed:
  • Joshua C. Steele

    (Arizona State University)

  • Kurt Mahoney

    (Arizona State University)

  • Omer Karovic

    (Arizona State University)

  • Larry W. Mays

    (Arizona State University)

Abstract

The design of urban stormwater systems and sanitary sewer systems consists of solving two problems: generating a layout of the system and the pipe design which includes the crown elevations, slopes and commercial pipe sizes. A heuristic model for determining the optimal (minimum cost) layout and pipe design of a storm sewer network is presented. The hierarchical procedure combines a sewer layout model formulated as a mixed-integer nonlinear programming (MINLP) problem which is solved using the General Algebraic Modeling System (GAMS) and a simulated annealing optimization procedure for the pipe design of a generated layout was developed in Excel. The GAMS and simulated annealing models are interfaced through linkage of Excel and GAMS. The pipe design model is based upon the simulated annealing method to optimize the crown elevations and diameter of pipe segments in a storm sewer network using layouts generated using GAMS. A sample scenario demonstrates that using these methods may allow for significant costs saving while simultaneously reducing the time typically required to design and compare multiple storm sewer networks.

Suggested Citation

  • Joshua C. Steele & Kurt Mahoney & Omer Karovic & Larry W. Mays, 2016. "Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1605-1620, March.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:5:d:10.1007_s11269-015-1191-8
    DOI: 10.1007/s11269-015-1191-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1191-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1191-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omer Karovic & Larry Mays, 2014. "Sewer System Design Using Simulated Annealing in Excel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4551-4565, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal M. Alfaisal & Larry W. Mays, 2021. "Optimization Models for Layout and Pipe Design for Storm Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4841-4854, November.
    2. Praveen K. Navin & Yogesh P. Mathur, 2016. "Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3627-3643, August.
    3. Gustavo Paiva Weyne Rodrigues & Luis Henrique Magalhães Costa & Guilherme Marques Farias & Marco Aurélio Holanda Castro, 2019. "A Depth-First Search Algorithm for Optimizing the Gravity Pipe Networks Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4583-4598, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Praveen K. Navin & Yogesh P. Mathur, 2016. "Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3627-3643, August.
    2. Faisal M. Alfaisal & Larry W. Mays, 2021. "Optimization Models for Layout and Pipe Design for Storm Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4841-4854, November.
    3. Upaka Rathnayake & Tiku Tanyimboh, 2015. "Evolutionary Multi-Objective Optimal Control of Combined Sewer Overflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2715-2731, June.
    4. Joshua Steele & Kurt Mahoney & Omer Karovic & Larry Mays, 2016. "Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1605-1620, March.
    5. Waqed H. Hassan & Musa H. Jassem & Safaa S. Mohammed, 2018. "A GA-HP Model for the Optimal Design of Sewer Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 865-879, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:5:d:10.1007_s11269-015-1191-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.