IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i13d10.1007_s11269-019-02368-8.html
   My bibliography  Save this article

Joint Optimization of Conceptual Rainfall-Runoff Model Parameters and Weights Attributed to Meteorological Stations

Author

Listed:
  • Adam P. Piotrowski

    (Polish Academy of Sciences)

  • Marzena Osuch

    (Polish Academy of Sciences)

  • Jarosław J. Napiorkowski

    (Polish Academy of Sciences)

Abstract

Conceptual lumped rainfall-runoff models are frequently used for various environmental problems. To put them into practice, both the model calibration method and data series of the area-averaged precipitation and air temperature are needed. In the case when data from more than one measurement station are available, first the catchment-averaged meteorological data series are usually obtained by some method, and then they are used for calibration of a lumped rainfall-runoff model. However, various optimization methods could easily be applied to simultaneously calibrate both the aggregation weights attributed to various meteorological stations to obtain a lumped meteorological data series and the rainfall-runoff model parameters. This increases the problem dimensionality but allows the optimization procedure to choose the data that are most important for the rainfall-runoff process in a particular catchment, without a priori assumptions. We test the idea using two conceptual models, HBV and GR4J, and three mutually different, relatively recently proposed Evolutionary Computation and Swarm Intelligence optimization algorithms, that are applied to three catchments located in Poland and northwestern USA. We consider two cases: with and without the model error correction applied to the rainfall-runoff models. It is shown that for the calibration period, joint optimization of the weights used to aggregate the meteorological data and the parameters of the rainfall-runoff model improves the results. However, the results for the validation period are inconclusive and depend on the model, error correction, optimization algorithm, and catchment.

Suggested Citation

  • Adam P. Piotrowski & Marzena Osuch & Jarosław J. Napiorkowski, 2019. "Joint Optimization of Conceptual Rainfall-Runoff Model Parameters and Weights Attributed to Meteorological Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4509-4524, October.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02368-8
    DOI: 10.1007/s11269-019-02368-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02368-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02368-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenlin Yuan & Meiqi Liu & Fang Wan, 2019. "Calculation of Critical Rainfall for Small-Watershed Flash Floods Based on the HEC-HMS Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2555-2575, May.
    2. A. Bhadra & A. Bandyopadhyay & R. Singh & N. Raghuwanshi, 2010. "Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 37-62, January.
    3. Tian Peng & Jianzhong Zhou & Chu Zhang & Na Sun, 2018. "Modeling and Combined Application of Orthogonal Chaotic NSGA-II and Improved TOPSIS to Optimize a Conceptual Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3781-3799, September.
    4. Meng-Xuan Jie & Hua Chen & Chong-Yu Xu & Qiang Zeng & Jie Chen & Jong-Suk Kim & Sheng-lian Guo & Fu-Qiang Guo, 2018. "Transferability of Conceptual Hydrological Models Across Temporal Resolutions: Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1367-1381, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhou & Zhongmin Liang & Binquan Li & Yixin Huang & Kai Wang & Yiming Hu, 2021. "Seamless Integration of Rainfall Spatial Variability and a Conceptual Hydrological Model," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    2. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    3. Xiaoyang Tang & Deshan Tang & Fulin Zhang, 2024. "A Framework for Algorithmic Improvement to Mitigate the Effects of Equifinality in the Calibration of High-dimensional Parameters for Hydrological Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 251-267, January.
    4. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    5. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    6. Adam P. Piotrowski & Jaroslaw J. Napiorkowski & Marzena Osuch, 2019. "Relationship Between Calibration Time and Final Performance of Conceptual Rainfall-Runoff Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 19-37, January.
    7. Wen-Cheng Liu & Tien-Hsiang Hsieh & Hong-Ming Liu, 2021. "Flood Risk Assessment in Urban Areas of Southern Taiwan," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    8. Tian Peng & Chu Zhang & Jianzhong Zhou, 2019. "Intra- and Inter-Annual Variability of Hydrometeorological Variables in the Jinsha River Basin, Southwest China," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    9. D. Pantelakis & Th. Zissis & E. Anastasiadou-Partheniou & E. Baltas, 2012. "Numerical Models for the Simulation of Overland Flow in Fields Within Surface Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1217-1229, March.
    10. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2020. "Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting," Renewable Energy, Elsevier, vol. 156(C), pages 804-819.
    11. Shin-Jen Cheng, 2010. "Generation of Runoff Components from Exponential Expressions of Serial Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3561-3590, October.
    12. Babak Zolghadr-Asli & Omid Bozorg-Haddad & Maedeh Enayati & Xuefeng Chu, 2021. "A review of 20-year applications of multi-attribute decision-making in environmental and water resources planning and management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14379-14404, October.
    13. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    14. Salwa Ramly & Wardah Tahir & Jazuri Abdullah & Janmaizatulriah Jani & Suzana Ramli & Arnis Asmat, 2020. "Flood Estimation for SMART Control Operation Using Integrated Radar Rainfall Input with the HEC-HMS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3113-3127, August.
    15. Shaohong Li & Peng Cui & Ping Cheng & Lizhou Wu, 2022. "Modified Green–Ampt Model Considering Vegetation Root Effect and Redistribution Characteristics for Slope Stability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2395-2410, May.
    16. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    17. Chu Zhang & Tian Peng & Chaoshun Li & Wenlong Fu & Xin Xia & Xiaoming Xue, 2019. "Multiobjective Optimization of a Fractional-Order PID Controller for Pumped Turbine Governing System Using an Improved NSGA-III Algorithm under Multiworking Conditions," Complexity, Hindawi, vol. 2019, pages 1-18, February.
    18. Sheng Sheng & Hua Chen & Fu-Qiang Guo & Jie Chen & Chong-Yu Xu & Sheng-lian Guo, 2020. "Transferability of a Conceptual Hydrological Model across Different Temporal Scales and Basin Sizes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2953-2968, July.
    19. Shuai Zhou & Yimin Wang & Ziyan Li & Jianxia Chang & Aijun Guo, 2021. "Quantifying the Uncertainty Interaction Between the Model Input and Structure on Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3915-3935, September.
    20. Tian Peng & Chu Zhang & Jianzhong Zhou & Xin Xia & Xiaoming Xue, 2019. "Multi-Objective Optimization for Flood Interval Prediction Based on Orthogonal Chaotic NSGA-II and Kernel Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4731-4748, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02368-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.