IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i7d10.1007_s11269-018-1936-2.html
   My bibliography  Save this article

Development and Implementation of Support Vector Machine Regression Surrogate Models for Predicting Groundwater Pumping-Induced Saltwater Intrusion into Coastal Aquifers

Author

Listed:
  • Alvin Lal

    (James Cook University)

  • Bithin Datta

    (James Cook University)

Abstract

Predicting the extent of saltwater intrusion (SWI) into coastal aquifers in response to changing pumping patterns is a prerequisite of any groundwater management framework. This study investigates the feasibility of using support vector machine regression (SVMr), an innovative artificial intelligence-based machine learning algorithm for predicting salinity concentrations at selected monitoring wells in an illustrative aquifer under variable groundwater pumping conditions. For evaluation purpose, the prediction results of SVMr are compared with well-established genetic programming (GP) based surrogate models. SVMr and GP models are trained and validated using identical sets of input (pumping) and output (salinity concentration) datasets. The trained and validated models are then used to predict salinity concentrations at specified monitoring wells in response to new pumping datasets. Prediction capabilities of the two learning machines are evaluated using different proficiency measures to ensure their practicality and generalisation ability. The performance evaluation results suggest that the prediction capability of SVMr is superior to GP models. Also, a sensitivity analysis methodology is proposed for assessing the impact of pumping rates on salt concentrations at monitoring locations. This sensitivity analysis provides a subset of most influential pumping rates, which is used to construct new SVMr surrogate models with improved predictive capabilities. The improved prediction capability and the generalisation ability of the SVMr models together with the ability to improve the accuracy of prediction by refining the input set for training makes the use of proposed SVMr models more attractive. Prediction models with more accurate prediction capability makes it potentially very useful for designing large scale coastal aquifer management strategies.

Suggested Citation

  • Alvin Lal & Bithin Datta, 2018. "Development and Implementation of Support Vector Machine Regression Surrogate Models for Predicting Groundwater Pumping-Induced Saltwater Intrusion into Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2405-2419, May.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1936-2
    DOI: 10.1007/s11269-018-1936-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1936-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1936-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Sreekanth & Bithin Datta, 2011. "Comparative Evaluation of Genetic Programming and Neural Network as Potential Surrogate Models for Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3201-3218, October.
    2. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    2. Jina Yin & Frank T.-C. Tsai & Chunhui Lu, 2022. "Bi-objective Extraction-injection Optimization Modeling for Saltwater Intrusion Control Considering Surrogate Model Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6017-6042, December.
    3. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Vasileios Christelis & Aristotelis Mantoglou, 2019. "Pumping Optimization of Coastal Aquifers Using Seawater Intrusion Models of Variable-Fidelity and Evolutionary Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 555-568, January.
    5. G. Kopsiaftis & V. Christelis & A. Mantoglou, 2019. "Comparison of Sharp Interface to Variable Density Models in Pumping Optimisation of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1397-1409, March.
    6. Xin Liu & Shunlong Li, 2022. "Impact of COVID-19 pandemic on low-carbon shared traffic scheduling under machine learning model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 987-995, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Mahmoodian & Juan Pablo Carbajal & Vasilis Bellos & Ulrich Leopold & Georges Schutz & Francois Clemens, 2018. "A Hybrid Surrogate Modelling Strategy for Simplification of Detailed Urban Drainage Simulators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5241-5256, December.
    2. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    3. Shishir Gaur & Apurve Dave & Anurag Gupta & Anurag Ohri & Didier Graillot & S. B. Dwivedi, 2018. "Application of Artificial Neural Networks for Identifying Optimal Groundwater Pumping and Piping Network Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5067-5079, December.
    4. Subhajit Dey & Om Prakash, 2022. "Coupled Sharp-interface and Density-dependent Model for Simultaneous Optimization of Production Well Locations and Pumping in Coastal Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2327-2341, May.
    5. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    6. E. Fallah-Mehdipour & O. Bozorg Haddad & H. Orouji & M. Mariño, 2013. "Application of Genetic Programming in Stage Hydrograph Routing of Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3261-3272, July.
    7. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    8. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    9. Arianna Renau-Pruñonosa & Ignacio Morell & David Pulido-Velazquez, 2016. "A Methodology to Analyse and Assess Pumping Management Strategies in Coastal Aquifers to Avoid Degradation Due to Seawater Intrusion Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4823-4837, October.
    10. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    11. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    12. Charalampos Doulgeris & Thomas Zissis, 2014. "3D Variable Density Flow Simulation to Evaluate Pumping Schemes in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4943-4956, November.
    13. Pallavi Chattopadhyay & Nimisha Vedanti & V. Singh, 2015. "A Conceptual Numerical Model to Simulate Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 771-784, February.
    14. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    15. Partha Majumder & T. I. Eldho, 2016. "A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1953-1972, April.
    16. G. Kopsiaftis & V. Christelis & A. Mantoglou, 2019. "Comparison of Sharp Interface to Variable Density Models in Pumping Optimisation of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1397-1409, March.
    17. Shishir Gaur & Sudheer Ch & Didier Graillot & B. Chahar & D. Kumar, 2013. "Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 927-941, February.
    18. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    19. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    20. E. Fallah-Mehdipour & O. Bozorg Haddad & M. Mariño, 2012. "Real-Time Operation of Reservoir System by Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4091-4103, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1936-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.