IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i15d10.1007_s11269-018-2128-9.html
   My bibliography  Save this article

Application of Artificial Neural Networks for Identifying Optimal Groundwater Pumping and Piping Network Layout

Author

Listed:
  • Shishir Gaur

    (Indian Institute of Technology (BHU))

  • Apurve Dave

    (Indian Institute of Technology (BHU))

  • Anurag Gupta

    (Indian Institute of Technology (BHU))

  • Anurag Ohri

    (Indian Institute of Technology (BHU))

  • Didier Graillot

    (UMR CNRS 5600 EVS, Ecole des Mines de Saint-Etienne (EMSE/SPIN))

  • S. B. Dwivedi

    (Indian Institute of Technology (BHU))

Abstract

The simulation-optimization approach is often used to solve water resource management problem although repeated use of the simulation model enhances the computational load. In this study, Artificial Neural Network (ANN) and Bagged Decision Trees (BDT) models were developed as an approximator for Analytic Element Method (AEM) based groundwater flow model. Developed ANN and BDT models were coupled with Particle Swarm Optimization (PSO) model to solve the well-field management problem. The groundwater flow model was developed for the study area and used to generate the dataset for the training and testing of the ANN & BDT models. These coupled ANN-PSO & BDT-PSO models were employed to find the optimal design and cost of the new well-field system by optimizing discharge & co-ordinate of wells along with the cost effective layout of piping network. The Minimum Spanning Tree (MST) based model was used to find out the optimal piping network layout and checking the hydraulic constraints in the piping network. The results show that the ANN & BDT models are good approximators of AEM model and they can reduce the computational burden significantly although ANN model performs better than BDT model. The results show that the coupling of piping network model with simulation-optimization model is very significant for finding the cost effective and realistic design of the new well-field system.

Suggested Citation

  • Shishir Gaur & Apurve Dave & Anurag Gupta & Anurag Ohri & Didier Graillot & S. B. Dwivedi, 2018. "Application of Artificial Neural Networks for Identifying Optimal Groundwater Pumping and Piping Network Layout," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5067-5079, December.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2128-9
    DOI: 10.1007/s11269-018-2128-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2128-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2128-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Tsai & Vineet Katiyar & Doug Toy & Robert Goff, 2009. "Conjunctive Management of Large-Scale Pressurized Water Distribution and Groundwater Systems in Semi-Arid Area with Parallel Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1497-1517, June.
    2. George P. Karatzas, 2017. "Developments on Modeling of Groundwater Flow and Contaminant Transport," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3235-3244, August.
    3. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Zounemat-Kermani & Abdollah Ramezani-Charmahineh & Reza Razavi & Meysam Alizamir & Taha B.M.J. Ouarda, 2020. "Machine Learning and Water Economy: a New Approach to Predicting Dams Water Sales Revenue," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1893-1911, April.
    2. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    3. Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
    4. Penghui Ma & Yajin Hu & Hansheng Liu & Yuannong Li, 2020. "The Optimum Design Criteria for On-demand Pressurized Microirrigation Network Systems: Optimizing Subunits with Paired Laterals based on the Maximum Size," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3237-3255, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    2. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    3. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Dimitrios Karpouzos & Konstantinos Katsifarakis, 2013. "A Set of New Benchmark Optimization Problems for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3333-3348, July.
    5. Nikolai Gorev & Inna Kodzhespirova & Yuriy Kovalenko & Rogelio Álvarez & Eugenio Prokhorov & Alfredo Ramos, 2011. "Evolutionary Testing of Hydraulic Simulator Functionality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1935-1947, June.
    6. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    7. Jina Yin & Frank T.-C. Tsai & Chunhui Lu, 2022. "Bi-objective Extraction-injection Optimization Modeling for Saltwater Intrusion Control Considering Surrogate Model Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6017-6042, December.
    8. Wang, Nanzhe & Chang, Haibin & Kong, Xiang-Zhao & Zhang, Dongxiao, 2023. "Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability," Renewable Energy, Elsevier, vol. 211(C), pages 379-394.
    9. Subhajit Dey & Om Prakash, 2022. "Coupled Sharp-interface and Density-dependent Model for Simultaneous Optimization of Production Well Locations and Pumping in Coastal Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2327-2341, May.
    10. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    12. Mahmood Mahmoodian & Juan Pablo Carbajal & Vasilis Bellos & Ulrich Leopold & Georges Schutz & Francois Clemens, 2018. "A Hybrid Surrogate Modelling Strategy for Simplification of Detailed Urban Drainage Simulators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5241-5256, December.
    13. Alvin Lal & Bithin Datta, 2018. "Development and Implementation of Support Vector Machine Regression Surrogate Models for Predicting Groundwater Pumping-Induced Saltwater Intrusion into Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2405-2419, May.
    14. Q. Ma & M. Abily & M. Du & P. Gourbesville & Oliver Fouché, 2020. "Integrated Groundwater Resources Management: Spatially-Nested Modelling Approach for Water Cycle Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1319-1333, March.
    15. Hriday Kalita & Arup Sarma & Rajib Bhattacharjya, 2014. "Evaluation of Optimal River Training Work Using GA Based Linked Simulation-Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2077-2092, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2128-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.