IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i7d10.1007_s11269-022-03145-w.html
   My bibliography  Save this article

Coupled Sharp-interface and Density-dependent Model for Simultaneous Optimization of Production Well Locations and Pumping in Coastal Aquifer

Author

Listed:
  • Subhajit Dey

    (Indian Institute of Technology Patna)

  • Om Prakash

    (Indian Institute of Technology Patna)

Abstract

The main management challenge in coastal aquifers is to prevent saltwater intrusion, ensuring ample freshwater supply. Saltwater intrusion happens due to unregulated pumping from production wells. Therefore, it is essential to have an effective management policy, which ensures the requisite amount of freshwater to be withdrawn from coastal aquifers without causing saltwater intrusion. A methodology for optimizing production well locations and maximizing pumping from production wells is presented to achieve these conflicting objectives. The location of production wells directly affects the amount of freshwater pumped out of the coastal aquifer. Simultaneous optimization of production well locations and pumping from the same is achieved by linking mathematical simulation models with the optimization algorithm. A new methodology using coupled sharp-interface and density-dependent simulation models is developed to find optimal well locations and optimize the amount of freshwater pumped from the coastal aquifer. The performance of the developed methodology is evaluated for saltwater intrusion in the coastal city of Puri, India. The performance evaluation results show the developed methodology's applicability for managing saltwater intrusion while maximizing freshwater pumping in coastal aquifers under constraints of well location.

Suggested Citation

  • Subhajit Dey & Om Prakash, 2022. "Coupled Sharp-interface and Density-dependent Model for Simultaneous Optimization of Production Well Locations and Pumping in Coastal Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2327-2341, May.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03145-w
    DOI: 10.1007/s11269-022-03145-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03145-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03145-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J Sreekanth & Bithin Datta, 2014. "Stochastic and Robust Multi-Objective Optimal Management of Pumping from Coastal Aquifers Under Parameter Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2005-2019, May.
    2. Hany Abd-Elhamid & Akbar Javadi, 2011. "A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2755-2780, September.
    3. Goffe William L., 1996. "SIMANN: A Global Optimization Algorithm using Simulated Annealing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(3), pages 1-9, October.
    4. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    3. Fu-lin Li & Xue-qun Chen & Cai-hong Liu & Yan-qing Lian & Li He, 2018. "Laboratory tests and numerical simulations on the impact of subsurface barriers to saltwater intrusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1223-1235, April.
    4. Yizhong Chen & Li He & Hongwei Lu & Jing Li & Lixia Ren, 2018. "Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3135-3153, July.
    5. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Abdymomunov Azamat & Kang Kyu Ho, 2015. "The effects of monetary policy regime shifts on the term structure of interest rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 183-207, April.
    7. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    8. André Kurmann, 2004. "Maximum Likelihood Estimation of Dynamic Stochastic Theories with an Application to New Keynesian Pricing," Macroeconomics 0409028, University Library of Munich, Germany.
    9. Koen G. Zuurbier & Klaasjan J. Raat & Marcel Paalman & Ate T. Oosterhof & Pieter J. Stuyfzand, 2017. "How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 671-687, January.
    10. K. Chua & S. Ong, 2013. "Test of misspecification with application to negative binomial distribution," Computational Statistics, Springer, vol. 28(3), pages 993-1009, June.
    11. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    12. Ismail Abd-Elaty & Lorenzo Pugliese & Salvatore Straface, 2022. "Inclined Physical Subsurface Barriers for Saltwater Intrusion Management in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2973-2987, July.
    13. Lombardo, Giovanni & McAdam, Peter, 2012. "Financial market frictions in a model of the Euro area," Economic Modelling, Elsevier, vol. 29(6), pages 2460-2485.
    14. Peacock, Chris & Baumann, Ursel, 2008. "Globalisation, import prices and inflation dynamics," Bank of England working papers 359, Bank of England.
    15. William L. Goffe, "undated". "A Toolkit for Optimizing Functions in Economics," Computing in Economics and Finance 1997 65, Society for Computational Economics.
    16. K. L. Katsifarakis & I. A. Nikoletos & Ch. Stavridis, 2018. "Minimization of Transient Groundwater Pumping Cost - Analytical and Practical Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1053-1069, February.
    17. Xiaowei Wang & Jingli Shao & Yali Cui & Qiulan Zhang, 2020. "Application of a Surrogate Model for a Groundwater Numerical Simulation Model for Determination of the Annual Control Index of the Groundwater Table in China," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    18. Roger A. McCain, 2000. "Road Rage: Imitative Learning Of Self-Destructive Behavior In An Agent-Based Simulation," Computing in Economics and Finance 2000 270, Society for Computational Economics.
    19. Reiner Franke, 2018. "Competitive moment matching of a New-Keynesian and an Old-Keynesian model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 201-239, July.
    20. Ueda, Atsuko, 2008. "Dynamic model of childbearing and labor force participation of married women: Empirical evidence from Korea and Japan," Journal of Asian Economics, Elsevier, vol. 19(2), pages 170-180, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:7:d:10.1007_s11269-022-03145-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.