IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i10d10.1007_s11269-018-1992-7.html
   My bibliography  Save this article

Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm

Author

Listed:
  • Wei Kun Li

    (Zhejiang University of Technology)

  • Wan Liang Wang

    (Zhejiang University of Technology)

  • Li Li

    (Guilin University of Electronic Technology)

Abstract

With the increasing power demand and rapid depletion of conventional fossil fuel resources, hydroelectric power resource has caused great attention of the public. A multi reservoir system with multiple objectives including ecological water demand, hydropower generation, and water diversion in Lushui River basin in China is under consideration in this context. Aiming to improve the efficiency of the water resources utilization, a novel method called multi-objective Moth-flame optimization algorithm (MOMFA) has been applied into this problem. The proposed algorithm involves the effective properties of the original Moth-flame optimization algorithm and two efficient mechanisms named opposition-based learning and indicator-based selection have also been integrated into the algorithm with the purpose of assisting the algorithm to accelerate the convergence and maintain the diversity simultaneously. The performance of the proposed MOMFA tested on a series of benchmarks and the Lushui River Basin. The result indicated that the proposed algorithm is not only capable of obtaining the well pareto solutions on standard problem but also can find the best tradeoff of the components and simultaneously achieve a set of well distributed non-dominated solutions for the multi-objective water resources utilization problem. Compare with the results obtained by other algorithms, the superiority of the proposed MOMFA has also been verified.

Suggested Citation

  • Wei Kun Li & Wan Liang Wang & Li Li, 2018. "Optimization of Water Resources Utilization by Multi-Objective Moth-Flame Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3303-3316, August.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1992-7
    DOI: 10.1007/s11269-018-1992-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1992-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1992-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aida Tayebiyan & Thamer Ahmed Mohammed Ali & Abdul Halim Ghazali & M. A. Malek, 2016. "Optimization of Exclusive Release Policies for Hydropower Reservoir Operation by Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1203-1216, February.
    2. Asmadi Ahmad & Ahmed El-Shafie & Siti Razali & Zawawi Mohamad, 2014. "Reservoir Optimization in Water Resources: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3391-3405, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djaafar Zouache & Fouad Ben Abdelaziz & Mira Lefkir & Nour El-Houda Chalabi, 2021. "Guided Moth–Flame optimiser for multi-objective optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 877-899, January.
    2. Ting Wang & Yu Liu & Ying Wang & Xinmin Xie & Jinjun You, 2019. "A Multi-Objective and Equilibrium Scheduling Model Based on Water Resources Macro Allocation Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3355-3375, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.
    2. Katakam V SeethaRam, 2021. "Three Level Rule Curve for Optimum Operation of a Multipurpose Reservoir using Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 353-368, January.
    3. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    4. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    5. Asmadi Ahmad & Siti Fatin Mohd Razali & Zawawi Samba Mohamed & Ahmed El-shafie, 2016. "The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2497-2516, May.
    6. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    7. Muhammad Usman Rashid & Abid Latif & Muhammad Azmat, 2018. "Optimizing Irrigation Deficit of Multipurpose Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1675-1687, March.
    8. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    9. Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saaed Farzin & Alcigeimes B. Celeste & Ahmad-El Shafie, 2018. "Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4681-4706, November.
    10. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    11. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    12. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    13. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    14. Shiwei Yang & Yuanqin Wei & Junguang Chen & Yuanming Wang & Ruifeng Liang & Kefeng Li, 2024. "Multi-Objective Optimization and Coordination of Power Generation, Ecological Needs, and Carbon Emissions in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 123-136, January.
    15. Vartika Paliwal & Aniruddha D. Ghare & Ashwini B. Mirajkar & Neeraj Dhanraj Bokde & Andrés Elías Feijóo Lorenzo, 2019. "Computer Modeling for the Operation Optimization of Mula Reservoir, Upper Godavari Basin, India, Using the Jaya Algorithm," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    16. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    17. Wenhua Wan & Jianshi Zhao & Jiabiao Wang, 2019. "Revisiting Water Supply Rule Curves with Hedging Theory for Climate Change Adaptation," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    18. Yanbin Li & Yubo Li & Kai Feng & Kaiyuan Tian & Tongxuan Huang, 2023. "Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    19. Ming Zhang & Fei Yang & Jing-Xiu Wu & Zi-Wu Fan & Ying-Ying Wang, 2016. "Application of Minimum Reward Risk Model in Reservoir Generation Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1345-1355, March.
    20. B. François & B. Hingray & J. Creutin & F. Hendrickx, 2015. "Estimating Water System Performance Under Climate Change: Influence of the Management Strategy Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4903-4918, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:10:d:10.1007_s11269-018-1992-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.