IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i7d10.1007_s11269-017-1639-0.html
   My bibliography  Save this article

A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond

Author

Listed:
  • Ying Ouyang

    (USDA Forest Service, Center for Bottomland Hardwoods Research)

  • Joel O. Paz

    (Mississippi State University)

  • Gary Feng

    (USDA-ARS, Crop Science Research Laboratory)

  • John J. Read

    (USDA-ARS, Crop Science Research Laboratory)

  • Ardeshir Adeli

    (USDA-ARS, Crop Science Research Laboratory)

  • Johnie N. Jenkins

    (USDA-ARS, Crop Science Research Laboratory)

Abstract

With increased interest to conserve groundwater resources without reducing crop yield potential, more on-farm water storage ponds have been constructed in recent years in USA and around the world. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds have not yet been fully quantified. This study developed a computer model to estimate farm pond hydrological processes and water budgets using the STELLA (Structural Thinking and Experiential Learning Laboratory with Animation) software. The model was applied, as demonstrations, to estimate the diurnal and seasonal pond hydrological processes and water budget at Metcalf Farm (33o 39′ 48″ N, 90o 39′ 12″W) in Porter Bayou Watershed located in Mississippi Delta, USA. Two simulation scenarios were chosen in this study, one without and the other with pumping pond water for soybeans irrigation. Simulations showed that the evaporative loss of water from the pond was minimal, while the runoff water from rainfall was a major source of water entering into the pond. Therefore, factors that would affect surface water runoff should be considered in locating and sizing a farm pond in Mississippi. The seasonal rainwater and runoff water collected by the pond was: winter > spring > summer > fall, which corresponded well to the seasonal rainfall events; whereas seasonal order of pond evaporation was: summer > spring > fall > winter, which corresponded well to the seasonal solar radiation and air temperature. The STELLA model developed proved to be a useful tool for estimating pond water budget and consequently irrigation practices for crops.

Suggested Citation

  • Ying Ouyang & Joel O. Paz & Gary Feng & John J. Read & Ardeshir Adeli & Johnie N. Jenkins, 2017. "A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2225-2241, May.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1639-0
    DOI: 10.1007/s11269-017-1639-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1639-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1639-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N.S. Siddharthan & K. Narayanan (ed.), 2016. "Technology," India Studies in Business and Economics, Springer, number 978-981-10-1684-4, March.
    2. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    3. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belén López-Felices & José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & María Piquer-Rodríguez, 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    2. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Reinhart, Benjamin D. & Frankenberger, Jane R. & Hay, Christopher H. & Helmers, Matthew J., 2019. "Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Ying Ouyang & Gary Feng & Theodor D. Leininger & John Read & Johnie N. Jenkins, 2018. "Pond and Irrigation Model (PIM): a Tool for Simultaneously Evaluating Pond Water Availability and Crop Irrigation Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2969-2983, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João M. Fernandes & Miguel P. Monteiro, 2017. "Evolution in the number of authors of computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 529-539, February.
    2. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    3. Hansen, Eric & Rasmussen, Casper Claudi & Nybakk, Erlend, 2017. "Recessionary period activities in forest sector firms: Impacts on innovativeness," Journal of Forest Economics, Elsevier, vol. 28(C), pages 80-86.
    4. Philippe Aghion & Nicholas Bloom & Brian Lucking & Raffaella Sadun & John Van Reenen, 2021. "Turbulence, Firm Decentralization, and Growth in Bad Times," American Economic Journal: Applied Economics, American Economic Association, vol. 13(1), pages 133-169, January.
    5. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    6. Oomens, Ivette M. F. & Sadowski, Bert M., 2017. "The importance of value creation in smart city initiatives: An ecosystem approach," 28th European Regional ITS Conference, Passau 2017 169491, International Telecommunications Society (ITS).
    7. Michele Meoli & Silvio Vismara, 2016. "University support and the creation of technology and non-technology academic spin-offs," Small Business Economics, Springer, vol. 47(2), pages 345-362, August.
    8. Sutherland, Alex & Ariel, Barak & Farrar, William & De Anda, Randy, 2017. "Post-experimental follow-ups—Fade-out versus persistence effects: The Rialto police body-worn camera experiment four years on," Journal of Criminal Justice, Elsevier, vol. 53(C), pages 110-116.
    9. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    10. Benjamin Cabanes & Stephane Hubac & Pascal Le Masson & Benoit Weil, 2016. "From FMEA as a problem solving method to a design-oriented process: Toward a design perspective of FMEA," Post-Print hal-01281867, HAL.
    11. Ufuk Akcigit & Douglas Hanley & Nicolas Serrano-Velarde, 2021. "Back to Basics: Basic Research Spillovers, Innovation Policy, and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 1-43.
    12. Ying Ouyang & Gary Feng & Theodor D. Leininger & John Read & Johnie N. Jenkins, 2018. "Pond and Irrigation Model (PIM): a Tool for Simultaneously Evaluating Pond Water Availability and Crop Irrigation Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2969-2983, July.
    13. Erik E. Lehmann & Nikolaus Seitz, 2017. "Freedom and innovation: a country and state level analysis," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1009-1029, October.
    14. Lagoarde-Segot, Thomas, 2017. "Financialization: Towards a new research agenda," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 113-123.
    15. Sánchez-Molina, J.A. & Rodríguez, F. & Guzmán, J.L. & Ramírez-Arias, J.A., 2015. "Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design," Agricultural Water Management, Elsevier, vol. 151(C), pages 114-125.
    16. Chandan Sharma, 2017. "Do Firms Learn more from Exporting to the Developed Markets? Empirical Evidence of Indian Firms," Global Economy Journal (GEJ), World Scientific Publishing Co. Pte. Ltd., vol. 17(1), pages 1-11, March.
    17. Imad Antoine Ibrahim, 2020. "Legal Implications of the Use of Big Data in the Transboundary Water Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1139-1153, February.
    18. Amadou Keita & Dial Niang & Sibri Alphonse Sandwidi, 2022. "How Non-Governmental-Organization-Built Small-Scale Irrigation Systems Are a Failure in Africa," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    19. Putri Ayu Setya & Ery Tri Djatmika & Suharto, 2017. "Networking Factor of Topeng Malangan (Malangan Mask) Industry for the Business Sustainability (Case Study on Gunung Sari Craft Malang)," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(5), pages 306-321, May.
    20. Kougias, Ioannis & Szabó, Sándor, 2017. "Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?," Energy, Elsevier, vol. 140(P1), pages 318-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1639-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.