IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v151y2015icp114-125.html
   My bibliography  Save this article

Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design

Author

Listed:
  • Sánchez-Molina, J.A.
  • Rodríguez, F.
  • Guzmán, J.L.
  • Ramírez-Arias, J.A.

Abstract

The main objective of this work has been the development of a virtual sensor (VS) based on the water balance dynamics of tomato crops in greenhouses, using coconut coir substrate as an example in this case. Such sensors are used to provide a viable and economical alternative to expensive or impractical sensors. The final virtual sensor is the result of combining: crop growth, where the water is distributed in structural and non-structural plant biomass (storage); the substrate, which is considered to be composed of a single layer; and the water loss caused by transpiration and drainage. In this work, two ECH2O-EC-5 sensors (Decagon Devices) were calibrated and then used to determine the substrate water content; and a microlysimeter was installed to continuously sample the water supplied, the drainage, and the crop water loss values. The VS took into account the water supplied, the amount of water in three stores (the substrate, the root, and the aerial part of the crop), the climate, and the water loss. The water dynamic was determined by system identification techniques and by physical virtual sensors, which considered the water balance from a holistic point of view – as a sub-model for a customizable interface between crop growth and the plant ecosystem. The influence of both the crop and the climate conditions on the water balance was analysed and the virtual sensors were evaluated giving good final results.

Suggested Citation

  • Sánchez-Molina, J.A. & Rodríguez, F. & Guzmán, J.L. & Ramírez-Arias, J.A., 2015. "Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design," Agricultural Water Management, Elsevier, vol. 151(C), pages 114-125.
  • Handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:114-125
    DOI: 10.1016/j.agwat.2014.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    2. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    3. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    4. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.
    5. Van Vosselen, A. & Verplancke, H. & Van Ranst, E., 2005. "Assessing water consumption of banana: traditional versus modelling approach," Agricultural Water Management, Elsevier, vol. 74(3), pages 201-218, June.
    6. Shin, Jong Hwa & Park, Jong Seok & Son, Jung Eek, 2014. "Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants," Agricultural Water Management, Elsevier, vol. 135(C), pages 9-18.
    7. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Castro, A. & Sánchez-Molina, J.A. & Castilla, M. & Sánchez-Moreno, J. & Moreno-Úbeda, J.C. & Magán, J.J., 2017. "cFertigUAL: A fertigation management app for greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 183(C), pages 186-193.
    2. Pawlowski, A. & Sánchez-Molina, J.A. & Guzmán, J.L. & Rodríguez, F. & Dormido, S., 2017. "Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses," Agricultural Water Management, Elsevier, vol. 183(C), pages 16-25.
    3. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    4. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    5. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    6. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    7. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    8. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Lidia Roca & Jorge A. Sánchez & Francisco Rodríguez & Javier Bonilla & Alberto De la Calle & Manuel Berenguel, 2016. "Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand," Energies, MDPI, vol. 9(3), pages 1-17, March.
    10. Li, Xiaoliang & Liu, Fulai & Li, Guitong & Lin, Qimei & Jensen, Christian R., 2010. "Soil microbial response, water and nitrogen use by tomato under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 414-418, December.
    11. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    13. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    14. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    15. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    16. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    17. Zhou, Qingyun & Kang, Shaozhong & Li, Fusheng & Zhang, Lu, 2008. "Comparison of dynamic and static APRI-models to simulate soil water dynamics in a vineyard over the growing season under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 767-775, July.
    18. Yi, Ping & Liu, Hao & Liu, Shengxing & Han, Yang & Zhang, Xianbo & Yang, Guang & Wang, Chunting & Kader, Abdoul & Qiang, Xiaoman & Wang, Jinglei, 2024. "Assessment for aerodynamic and canopy resistances in simulating latent heat flux of Venlo-type greenhouse tomato," Agricultural Water Management, Elsevier, vol. 297(C).
    19. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    20. Gavilan, Pedro & Higueras, José L. & Lozano, David & Ruiz, Natividad, 2024. "The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:151:y:2015:i:c:p:114-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.