IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i7d10.1007_s11269-017-1634-5.html
   My bibliography  Save this article

Analysis of Possible Actions to Manage the Longitudinal Changes of Water Salinity in a Tidal River

Author

Listed:
  • Ali Dinar Abdullah

    (UNESCO-IHE Institute for Water Education
    Basra University)

  • Ioana Popescu

    (UNESCO-IHE Institute for Water Education
    Politechnica University of Timisoara)

  • Ali Dastgheib

    (UNESCO-IHE Institute for Water Education)

  • Pieter Zaag

    (UNESCO-IHE Institute for Water Education
    Delft University of Technology)

  • Ilyas Masih

    (UNESCO-IHE Institute for Water Education)

  • Usama F. A. Karim

    (University of Twente)

Abstract

In previous studies we have ascertained that inflows and seawater intrusion in the Shatt al-Arab River (SAR) are two key physical factors behind fluctuating and sharply escalating salinities observed in recent years. Such levels require a series of countermeasures and investigative studies to translate physical factors into a salinity dynamics model to understand the problem and its impact as these factors vary in location, time and quantity. A one-dimensional hydrodynamic and salt intrusion numerical model was applied to simulate the complex salinity regime in the SAR based on hourly time-series data for the year 2014. The model was used to analyse the impact of different management scenarios on salinity under different conditions. The results show a high correlation between seawater intrusion and river discharge. Increased use of water upstream and local water withdrawals along the SAR will increase seawater intrusion and salinity concentrations. Improving the quantity and quality of the upstream freshwater sources could reduce salinity levels. Discharging the drainage water into the river could be used to counteract the salt intrusion, considering that its location affects both the salinity distribution and extent. A scenario analysis based on a numerical model constructed for the longitudinal salinity variation associated with different sources in a tidal regime, can efficiently screen alternative water management strategies.

Suggested Citation

  • Ali Dinar Abdullah & Ioana Popescu & Ali Dastgheib & Pieter Zaag & Ilyas Masih & Usama F. A. Karim, 2017. "Analysis of Possible Actions to Manage the Longitudinal Changes of Water Salinity in a Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2157-2171, May.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1634-5
    DOI: 10.1007/s11269-017-1634-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1634-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1634-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pieter Zaag, 2007. "Asymmetry and Equity in Water Resources Management; Critical Institutional Issues for Southern Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 1993-2004, December.
    2. Shiati, K., 1991. "A regional approach to salinity management in river basins. A case study in southern Iran," Agricultural Water Management, Elsevier, vol. 19(1), pages 27-41, January.
    3. Quinn, Nigel W.T., 2011. "Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia," Agricultural Water Management, Elsevier, vol. 98(6), pages 930-940, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Rezaei & Hosein Alizadeh & Majid Ehtiat, 2019. "Process-based Analysis of the Climate Change Impacts on Primary Hydro-Salinity of the River Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4287-4302, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann Griensven & N. Fohrer & C. McCulloch, 2007. "Editorial Notes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 1991-1992, December.
    2. Michael Kaplowitz & Frank Lupi & Oscar Arreola, 2012. "Local Markets for Payments for Environmental Services: Can Small Rural Communities Self-Finance Watershed Protection?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3689-3704, October.
    3. Nigel W. T. Quinn, 2020. "Policy Innovation and Governance for Irrigation Sustainability in the Arid, Saline San Joaquin River Basin," Sustainability, MDPI, vol. 12(11), pages 1-38, June.
    4. Caretta, Martina Angela, 2015. "Managing variability and scarcity. An analysis of Engaruka: A Maasai smallholder irrigation farming community," Agricultural Water Management, Elsevier, vol. 159(C), pages 318-330.
    5. Ruoyu Wang & Huajin Chen & Yuzhou Luo & Patrick Moran & Michael Grieneisen & Minghua Zhang, 2019. "Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    6. Leon Hermans, 2011. "An Approach to Support Learning from International Experience with Water Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 373-393, January.
    7. Jos Timmermans, 2009. "Interactive Actor Analysis for Rural Water Management in The Netherlands: An Application of the Transactional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1211-1236, April.
    8. George Atisa & Mahadev Bhat & Michael McClain, 2014. "Economic Assessment of Best Management Practices in the Mara River Basin: Toward Implementing Payment for Watershed Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1751-1766, April.
    9. Stewart Rood & Jenny Vandersteen, 2010. "Relaxing the Principle of Prior Appropriation: Stored Water and Sharing the Shortage in Alberta, Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1605-1620, June.
    10. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    11. Sarah Acquah & Frank A. Ward, 2017. "Optimizing Adjustments to Transboundary Water Sharing Plans: A Multi-Basin Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5019-5042, December.
    12. Mul, M.L. & Kemerink, J.S. & Vyagusa, N.F. & Mshana, M.G. & van der Zaag, P. & Makurira, H., 2011. "Water allocation practices among smallholder farmers in the South Pare Mountains, Tanzania: The issue of scale," Agricultural Water Management, Elsevier, vol. 98(11), pages 1752-1760, September.
    13. Delgado, Bueno & Paredes, Madrid & Martínez, Molina, 2015. "Software application for calculating solar radiation and equivalent evaporation in mobile devices," Agricultural Water Management, Elsevier, vol. 151(C), pages 30-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1634-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.