IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2845-d232475.html
   My bibliography  Save this article

Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California

Author

Listed:
  • Ruoyu Wang

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Huajin Chen

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Yuzhou Luo

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Patrick Moran

    (USDA-ARS, Exotic and Invasive Weeds Research Unit, 800 Buchanan Street, Albany, CA 94710, USA)

  • Michael Grieneisen

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Minghua Zhang

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

Abstract

Nitrogen loading from agricultural landscapes can trigger a cascade of detrimental effects on aquatic ecosystems. Recently, the spread of aquatic weed infestations ( Eichhornia crassipes , Egeria densa , Ludwigia spp., and Onagraceae ) in the Sacramento-San Joaquin Delta of northern California has raised concerns, and nitrogen loading from California’s intensive farming regions is considered as one of the major contributors. In this study, we employed the Soil and Water Assessment Tool (SWAT) to simulate nitrogen exports from the agriculturally intensive San Joaquin River watershed to the Delta. The alternate tile drainage routine in SWAT was tested against monitoring data in the tile-drained area of the watershed to examine the suitability of the new routine for a tile nitrate simulation. We found that the physically based Hooghoudt and Kirkham tile drain routine improved model performance in representing tile nitrate runoff, which contributed to 40% of the nitrate loading to the San Joaquin River. Calibration results show that the simulated riverine nitrate loads matched the observed data fairly well. According to model simulation, the San Joaquin River plays a critical role in exporting nitrogen to the Delta by exporting 3135 tons of nitrate-nitrogen annually, which has a strong ecological implication in supporting the growth of aquatic weeds, which has impeded water flow, impairs commercial navigation and recreational activities, and degrades water quality in Bay-Delta waterways. Since nitrate loadings contributed by upstream runoff are an important nutrient to facilitate weed development, our study results should be seen as a prerequisite to evaluate the potential growth impact of aquatic weeds and scientific evidence for area-wide weed control decisions.

Suggested Citation

  • Ruoyu Wang & Huajin Chen & Yuzhou Luo & Patrick Moran & Michael Grieneisen & Minghua Zhang, 2019. "Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2845-:d:232475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margaret W. Gitau & Jingqiu Chen & Zhao Ma, 2016. "Water Quality Indices as Tools for Decision Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2591-2610, June.
    2. Ullrich, Antje & Volk, Martin, 2009. "Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity," Agricultural Water Management, Elsevier, vol. 96(8), pages 1207-1217, August.
    3. Quinn, Nigel W.T., 2011. "Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia," Agricultural Water Management, Elsevier, vol. 98(6), pages 930-940, April.
    4. Stringfellow, William T. & Hanlon, Jeremy S. & Borglin, Sharon E. & Quinn, Nigel W.T., 2008. "Comparison of wetland and agriculture drainage as sources of biochemical oxygen demand to the San Joaquin River, California," Agricultural Water Management, Elsevier, vol. 95(5), pages 527-538, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    2. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    3. Marko Reljić & Marija Romić & Davor Romić & Gordon Gilja & Vedran Mornar & Gabrijel Ondrasek & Marina Bubalo Kovačić & Monika Zovko, 2023. "Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    4. Zhang, Dejian & Chen, Xingwei & Yao, Huaxia & Lin, Bingqing, 2015. "Improved calibration scheme of SWAT by separating wet and dry seasons," Ecological Modelling, Elsevier, vol. 301(C), pages 54-61.
    5. Wang, Chunying & Jiang, Rui & Boithias, Laurie & Sauvage, Sabine & Sánchez-Pérez, José-Miguel & Mao, Xiaomin & Han, Yuping & Hayakawa, Atsushi & Kuramochi, Kanta & Hatano, Ryusuke, 2016. "Assessing potassium environmental losses from a dairy farming watershed with the modified SWAT model," Agricultural Water Management, Elsevier, vol. 175(C), pages 91-104.
    6. Ghorban Asgari & Ensieh Komijani & Abdolmotaleb Seid-Mohammadi & Mohammad Khazaei, 2021. "Assessment the Quality of Bottled Drinking Water Through Mamdani Fuzzy Water Quality Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5431-5452, December.
    7. Ali Dinar Abdullah & Ioana Popescu & Ali Dastgheib & Pieter Zaag & Ilyas Masih & Usama F. A. Karim, 2017. "Analysis of Possible Actions to Manage the Longitudinal Changes of Water Salinity in a Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2157-2171, May.
    8. Nina Zarrineh & Karim C. Abbaspour & Ann Van Griensven & Bernard Jeangros & Annelie Holzkämper, 2018. "Model-Based Evaluation of Land Management Strategies with Regard to Multiple Ecosystem Services," Sustainability, MDPI, vol. 10(11), pages 1-21, October.
    9. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    10. Lescot, Jean-Marie & Bordenave, Paul & Leccia, Odile & Petit, Kevin, 2013. "Contrôle des pollutions diffuses par les pesticides. Une approche coût-efficacité spatialement distribuée," Économie rurale, French Society of Rural Economics (SFER Société Française d'Economie Rurale), vol. 333(January-F).
    11. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    12. De Girolamo, Anna Maria & Barca, Emanuele & Pappagallo, Giuseppe & Lo Porto, Antonio, 2017. "Simulating ecologically relevant hydrological indicators in a temporary river system," Agricultural Water Management, Elsevier, vol. 180(PB), pages 194-204.
    13. Cisneros, J.M. & Grau, J.B. & Antón, J.M. & de Prada, J.D. & Cantero, A. & Degioanni, A.J., 2011. "Assessing multi-criteria approaches with environmental, economic and social attributes, weights and procedures: A case study in the Pampas, Argentina," Agricultural Water Management, Elsevier, vol. 98(10), pages 1545-1556, August.
    14. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    15. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    16. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    17. Brouziyne, Youssef & Abouabdillah, Aziz & Hirich, Abdelaziz & Bouabid, Rachid & Zaaboul, Rashyd & Benaabidate, Lahcen, 2018. "Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios," Agricultural Systems, Elsevier, vol. 162(C), pages 154-163.
    18. Kang, Xiaoyu & Qi, Junyu & Li, Sheng & Meng, Fan-Rui, 2022. "A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Mohammad Ali Baghapour & Mohammad Reza Shooshtarian & Mahdi Zarghami, 2020. "Process Mining Approach of a New Water Quality Index for Long-Term Assessment under Uncertainty Using Consensus-Based Fuzzy Decision Support System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1155-1172, February.
    20. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2845-:d:232475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.