IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i1d10.1007_s11269-016-1532-2.html
   My bibliography  Save this article

A Hybrid Statistical Downscaling Method Based on the Classification of Rainfall Patterns

Author

Listed:
  • Gwo-Fong Lin

    (National Taiwan University)

  • Ming-Jui Chang

    (National Taiwan University)

  • Jyue-Ting Wu

    (National Taiwan University)

Abstract

A hybrid statistical downscaling method based on the classification of rainfall patterns is presented which is capable of overcoming the poor representation of extreme events. The large-scale datasets, which are obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and the global circulation models (GCMs) outputs, and the local daily rainfall data are analyzed to assess the impacts of climate change on rainfall. The proposed method is composed of two steps. The first step is the classification of daily rainfall patterns. The detrended fluctuation analysis (DFA) is introduced to define the extreme rainfall. Two classification models, extreme rainfall and wet rainfall, are developed to describe the relationship between large-scale weather factors and rainfall patterns using support vector machine (SVM). These two models are able to identify the three rainfall patterns (the extreme, the normal and the dry rainfall) of the daily weather factors. The second step is the estimation of daily rainfall. The improved self-organizing linear output map (ISOLO) is adopted to estimate the rainfall for the aforementioned three different rainfall patterns. The future rainfall changes are calculated for the periods 2046–2065 and 2081–2100 under the A2 and B1 scenarios. An application to Taiwan has shown that the proposed method provides reliable and accurate rainfall-pattern classification. In addition, the improvement of the estimation of daily rainfall is significant, especially for the extreme rainfall. In conclusion, the proposed method is effective to overcome the poor representation of extreme events and the impacts of climate change on rainfall are analyzed.

Suggested Citation

  • Gwo-Fong Lin & Ming-Jui Chang & Jyue-Ting Wu, 2017. "A Hybrid Statistical Downscaling Method Based on the Classification of Rainfall Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 377-401, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1532-2
    DOI: 10.1007/s11269-016-1532-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1532-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1532-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    2. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    3. Hung-Wei Tseng & Tao-Chang Yang & Chen-Min Kuo & Pao-Shan Yu, 2012. "Application of Multi-site Weather Generators for Investigating Wet and Dry Spell Lengths under Climate Change: A Case Study in Southern Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4311-4326, December.
    4. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    5. Subimal Ghosh & Sudhir Katkar, 2012. "Modeling Uncertainty Resulting from Multiple Downscaling Methods in Assessing Hydrological Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3559-3579, September.
    6. Grau-Carles, Pilar, 2006. "Bootstrap testing for detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.
    2. Sultan Mahmud & Ferdausi Mahojabin Sumana & Md Mohsin & Md. Hasinur Rahaman Khan, 2022. "Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1863-1884, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    2. Gwo-Fong Lin & Ming-Jui Chang & Chian-Fu Wang, 2017. "A Novel Spatiotemporal Statistical Downscaling Method for Hourly Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3465-3489, September.
    3. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    4. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    5. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    6. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    7. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    8. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    9. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Thomas Kremser & Margarethe Rammerstorfer, 2017. "Predictive Performance and Bias: Evidence from Natural Gas Markets," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 7(2), pages 1-26, June.
    11. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    12. Lei Qiao & Yang Hong & Renee McPherson & Mark Shafer & David Gade & David Williams & Sheng Chen & Douglas Lilly, 2014. "Climate Change and Hydrological Response in the Trans-State Oologah Lake Watershed–Evaluating Dynamically Downscaled NARCCAP and Statistically Downscaled CMIP3 Simulations with VIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3291-3305, August.
    13. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    14. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    15. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    16. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    17. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    18. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    19. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    20. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1532-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.