IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i1d10.1007_s11269-016-1526-0.html
   My bibliography  Save this article

Granular Computing for Prediction of Scour Below Spillways

Author

Listed:
  • Roohollah Noori

    (University of Tehran)

  • Hossien Sheikhian

    (University of Tehran)

  • Farhad Hooshyaripor

    (Islamic Azad University)

  • Ali Naghikhani

    (University of Tehran)

  • Jan Franklin Adamowski

    (McGill University)

  • Behzad Ghiasi

    (University of Tehran)

Abstract

Effective estimation of scour parameters downstream ski-jump buckets is very important for risk management plan. This paper presents a new method for prediction of the depth, length, and width of the scour hole downstream ski-jump buckets based on granular computing (GrC) technique. This method employs various independent hydraulic, morphologic, and geotechnical factors to predict dependent scour parameters. Evaluation of the results indicated that the dependent scour parameters are affected more by the discharge, falling height, and mean sediment size and less by the lip angle of the bucket. Analyses of the obtained results demonstrated the high accuracy of the GrC, as the predicted values were in good agreement with the observations. Furthermore, statistical equations were derived based on the multiple linear regressions (MLR) to model the relationship between the scour parameters. Despite our expectations, the results of MLR, as a simple model, were excellent as compared to GrC. MLR results were also superior to those of well-known empirical equations presented to date. The GrC gives the best performance for the prediction of scour parameters; however, MLR model is also suggested for any real cases because it can be more applicable by practical engineers than GrC as a black box model.

Suggested Citation

  • Roohollah Noori & Hossien Sheikhian & Farhad Hooshyaripor & Ali Naghikhani & Jan Franklin Adamowski & Behzad Ghiasi, 2017. "Granular Computing for Prediction of Scour Below Spillways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 313-326, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1526-0
    DOI: 10.1007/s11269-016-1526-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1526-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1526-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei-Chiang Hong & Ping-Feng Pai, 2007. "Potential assessment of the support vector regression technique in rainfall forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 495-513, February.
    2. Ali Rahimikhoob, 2016. "Comparison of M5 Model Tree and Artificial Neural Network’s Methodologies in Modelling Daily Reference Evapotranspiration from NOAA Satellite Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3063-3075, July.
    3. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.
    4. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    5. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    2. G. Zucco & G. Tayfur & T. Moramarco, 2015. "Reverse Flood Routing in Natural Channels using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4241-4267, September.
    3. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    4. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    5. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    6. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    7. Gokmen Tayfur & Luca Brocca, 2015. "Fuzzy Logic for Rainfall-Runoff Modelling Considering Soil Moisture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3519-3533, August.
    8. Manish Pandey & Masoud Karbasi & Mehdi Jamei & Anurag Malik & Jaan H. Pu, 2023. "A Comprehensive Experimental and Computational Investigation on Estimation of Scour Depth at Bridge Abutment: Emerging Ensemble Intelligent Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3745-3767, July.
    9. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    10. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    11. Jiyang Tian & Chuanzhe Li & Jia Liu & Fuliang Yu & Shuanghu Cheng & Nana Zhao & Wan Zurina Wan Jaafar, 2016. "Groundwater Depth Prediction Using Data-Driven Models with the Assistance of Gamma Test," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    12. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    13. Zhang, Chenglong & Engel, Bernard A. & Guo, Ping, 2018. "An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness," Agricultural Water Management, Elsevier, vol. 210(C), pages 22-31.
    14. Mohammad Taghi Sattari & Halit Apaydin & Shahaboddin Shamshirband, 2020. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
    15. Fereshteh Modaresi & Shahab Araghinejad, 2014. "A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4095-4111, September.
    16. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    18. Dehghanipour, Amir Hossein & Zahabiyoun, Bagher & Schoups, Gerrit & Babazadeh, Hossein, 2019. "A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    20. A. kumar & Manish Goyal & C. Ojha & R. Singh & P. Swamee & R. Nema, 2013. "Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 911-925, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1526-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.