IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i11d10.1007_s11269-017-1682-x.html
   My bibliography  Save this article

Utilization of the Bayesian Method to Improve Hydrological Drought Prediction Accuracy

Author

Listed:
  • Deg-Hyo Bae

    (Sejong University)

  • Kyung-Hwan Son

    (Sejong University
    Yeongsan River Flood Control Office, Ministry of Land, Infrastructure and Transport)

  • Jae-Min So

    (Sejong University)

Abstract

This study established a hydrological drought forecasting system based on the Bayesian method and evaluated its utilization for South Korea. The regression result between Historical Runoff (HR) and Ensemble Streamflow Prediction Runoff (ESP_R) was used as prior information in the Bayesian method. Additionally Global seasonal forecast System 5 Runoff (GS5_R) produced using a dynamic prediction method was used in a likelihood function. Bayesian Runoff (BAY_R), as posterior information, was generated and compared with the ESP_R and GS5_R results for predictive ability evaluation. The Standardized Runoff Index (SRI) was selected for the drought prediction, and the BAY_SRI, GS5_SRI and ESP_SRI were computed using BAY_R, GS5_R and ESP_R, respectively. The Correlation Coefficient (CC), Nash-Sutcliffe Efficiency (NSE) and Receiver Operating Characteristic (ROC) score of BAY_SRI were the highest, and the Root Mean Square Error (RMSE) of BAY_SRI was the lowest among the methods. The Bayesian method improved the behavioral and quantitative error of drought prediction and the predictive ability of the occurrence of drought. In particular, the simulation accuracy was significantly improved during the flood season. Additionally, BAY_SRI represented past drought scenarios better than did the other two methods. Overall, we found that the Bayesian method could be applied for hydrological drought predictions for based on 1- and 2-month lead times.

Suggested Citation

  • Deg-Hyo Bae & Kyung-Hwan Son & Jae-Min So, 2017. "Utilization of the Bayesian Method to Improve Hydrological Drought Prediction Accuracy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3527-3541, September.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:11:d:10.1007_s11269-017-1682-x
    DOI: 10.1007/s11269-017-1682-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1682-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1682-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Sadegh & Morteza Shakeri Majd & Jairo Hernandez & Ali Torabi Haghighi, 2018. "The Quest for Hydrological Signatures: Effects of Data Transformation on Bayesian Inference of Watershed Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1867-1881, March.
    2. Quang-Tuong Vo & Jae-Min So & Deg-Hyo Bae, 2020. "An Integrated Framework for Extreme Drought Assessments Using the Natural Drought Index, Copula and Gi* Statistic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1353-1368, March.
    3. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    2. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    3. Golnaz Shahtahmassebi & Rana Moyeed, 2016. "An application of the generalized Poisson difference distribution to the Bayesian modelling of football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 260-273, August.
    4. C. Jessica E. Metcalf & David A. Stephens & Mark Rees & Svata M. Louda & Kathleen H. Keeler, 2009. "Using Bayesian inference to understand the allocation of resources between sexual and asexual reproduction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 143-170, May.
    5. David Lunn & Jessica Barrett & Michael Sweeting & Simon Thompson, 2013. "Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 551-572, August.
    6. Brun, Mélanie & Abraham, Christophe & Jarry, Marc & Dumas, Jacques & Lange, Frédéric & Prévost, Etienne, 2011. "Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: A hierarchical Bayesian modelling approach," Ecological Modelling, Elsevier, vol. 222(5), pages 1069-1079.
    7. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    8. Clough, Brian J. & Russell, Matthew B. & Domke, Grant M. & Woodall, Christopher W. & Radtke, Philip J., 2016. "Comparing tree foliage biomass models fitted to a multispecies, felled-tree biomass dataset for the United States," Ecological Modelling, Elsevier, vol. 333(C), pages 79-91.
    9. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    10. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    11. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).

    More about this item

    Keywords

    Hydrological drought prediction; Bayesian method; ESP; GS5; SRI;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:11:d:10.1007_s11269-017-1682-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.