IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i1p427-443.html
   My bibliography  Save this article

A Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems

Author

Listed:
  • Maryam Soltani
  • Reza Kerachian
  • Mohammad Nikoo
  • Hamideh Noory

Abstract

In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVaR can handle uncertainties in the form of probability distributions, while NINP incorporates uncertain inputs which are only available as intervals. This CVaR-NINP framework is used for agricultural water and return flow allocation planning under uncertainty. In this paper, to reduce the amount of saline return flow discharged into the river, a part of return flow of each agricultural network is diverted to an evaporation pond. Some meta-models based on Artificial Neural Network (ANN) are trained and validated using the results of Soil, Water, Atmosphere and Plant (SWAP) simulation model to reliably approximate the quantity and Total Dissolved Solids (TDS) load of agricultural return flows in a critical 7-day period. The effectiveness of the proposed methodology is examined through applying it to a part of Karkheh River catchment in the southwestern part of Iran. The results confirm the applicability of the model in incorporating the main uncertainties and generating water and waste load allocation policies in the form of interval numbers. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Maryam Soltani & Reza Kerachian & Mohammad Nikoo & Hamideh Noory, 2016. "A Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 427-443, January.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:1:p:427-443
    DOI: 10.1007/s11269-015-1170-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1170-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1170-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Nikoo & Reza Kerachian & Akbar Karimi, 2012. "A Nonlinear Interval Model for Water and Waste Load Allocation in River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2911-2926, August.
    2. L. Shao & X. Qin & Y. Xu, 2011. "A Conditional Value-at-Risk Based Inexact Water Allocation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2125-2145, July.
    3. Singh, Rajinder, 2004. "Simulations on direct and cyclic use of saline waters for sustaining cotton-wheat in a semi-arid area of north-west India," Agricultural Water Management, Elsevier, vol. 66(2), pages 153-162, April.
    4. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    5. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    6. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    7. Mandare, A.B. & Ambast, S.K. & Tyagi, N.K. & Singh, J., 2008. "On-farm water management in saline groundwater area under scarce canal water supply condition in the Northwest India," Agricultural Water Management, Elsevier, vol. 95(5), pages 516-526, May.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Wanshun Zhang & Yan Wang & Hong Peng & Yiting Li & Jushan Tang & K. Wu, 2010. "A Coupled Water Quantity–Quality Model for Water Allocation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 485-511, February.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nafiseh Bahrami & Mohammad Reza Nikoo & Ghazi Al-Rawas & Khalifa Al-Jabri & Amir H. Gandomi, 2023. "Optimal Treated Wastewater Allocation Among Stakeholders Based on an Agent-based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 135-156, January.
    2. Mohammad Reza Nikoo & Pouyan Hatami Bahman Beiglou & Najmeh Mahjouri, 2016. "Optimizing Multiple-Pollutant Waste Load Allocation in Rivers: An Interval Parameter Game Theoretic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4201-4220, September.
    3. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Gong, Xinglong, 2020. "Risk-based agricultural water allocation under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Soltani & Reza Kerachian & Mohammad Reza Nikoo & Hamideh Noory, 2016. "A Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 427-443, January.
    2. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    3. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    4. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    5. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    6. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    7. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    8. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    9. Kolos Ágoston, 2012. "CVaR minimization by the SRA algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 623-632, December.
    10. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    11. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    12. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    13. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    14. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    15. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    16. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    17. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    18. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    19. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    20. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:1:p:427-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.