IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i3p863-883.html
   My bibliography  Save this article

Geomorphologic Instantaneous Unit Hydrograph Based Hydrologic Response Models for Ungauged Hilly Watersheds in India

Author

Listed:
  • Anil Kumar

Abstract

Hydrologic response of two fourth-order hilly watersheds of the Ramganga river basin in the central Himalayan region of India has been predicted in this study. Geomorphologic Instantaneous Unit Hydrograph (GIUH) was derived using two models: (i) Horton’s stream-order ratios based model (GIUH-I); and (ii) Nash’s two-parameter gamma distribution based conceptual model (GIUH-II). The travel times for the overland-flow and the stream-flow in Horton-Strahler stream ordering system of the watersheds were determined analytically and probabilistically for GIUH-I model; while a dynamic component (mean velocity of flow) was estimated for the GIUH-II model using two approaches: (a) as a function of effective rainfall intensity (GIUH-IIa); and (b) on the basis of time of concentration concept (GIUH-IIb). Based on eight single-peaked isolated storm events for each watershed, the statistical analysis and coefficient of efficiency showed better overall correlation between predicted and observed direct runoff hydrographs, particularly in terms of the magnitude and time of occurrence of peak runoff rate, by GIUH-IIb as compared to GIUH-I and -IIa models. Moreover, the GIUH-IIb has additional advantage (compared to GIUH-IIa) for being independent of the measured velocity of flow corresponding to the peak flow rate at the watershed outlet. Since, these models require no historical data of rainfall and runoff, they can be effectively used to predict direct runoff from ungauged hilly watersheds for water resources planning and management in the region. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Anil Kumar, 2015. "Geomorphologic Instantaneous Unit Hydrograph Based Hydrologic Response Models for Ungauged Hilly Watersheds in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 863-883, February.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:863-883
    DOI: 10.1007/s11269-014-0848-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0848-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0848-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.
    2. S. Sarkar & R. Rai, 2011. "Flood Inundation Modeling Using Nakagami-m Distribution Based GIUH for a Partially Gauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3805-3835, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Grum & B. A. Abebe & A. M. Degu & H. Goitom & K. Woldearegay & R. Hessel & C. J. Ritsema & V. Geissen, 2023. "Evaluation of the Velocity Parameter Estimation Methods in a Geomorphological Instantaneous Unit Hydrograph (GIUH) Model for Simulating Flood Hydrograph in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 157-173, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Ji-yae Shin & Tae-Woong Kim, 2015. "Comparing Spatial Interpolation Schemes for Constructing a Flow Duration Curve in an Ungauged Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2249-2265, May.
    2. Marcelle Baptista & Ricardo Valcarcel & Vandré Maya & Fernando Canto, 2014. "Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Paraíba do Sul River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4781-4793, October.
    3. Javad Ahadiyan & Farhad Bahmanpouri & Atefeh Adeli & Carlo Gualtieri & Alireza Khoshkonesh, 2022. "Riprap Effect on Hydraulic Fracturing Process of Cohesive and Non-cohesive Protective Levees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 625-639, January.
    4. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    5. Darya FEDOROVA & Pavel KOVÁŘ & Jan GREGAR & Andrea JELÍNKOVÁ & Jana NOVOTNÁ, 2018. "The use of Snyder synthetic hydrograph for simulation of overland flow in small ungauged and gauged catchments," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 13(4), pages 185-192.
    6. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & A. Lohani & Rakesh Kumar, 2014. "Development of Geomorphology Based Regional Nash Model for Data Scares Central India Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 351-371, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:863-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.