IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i2p351-371.html
   My bibliography  Save this article

Development of Geomorphology Based Regional Nash Model for Data Scares Central India Region

Author

Listed:
  • R. Jaiswal
  • T. Thomas
  • R. Galkate
  • N. Ghosh
  • A. Lohani
  • Rakesh Kumar

Abstract

The development of rainfall runoff relationship for ungauged watersheds using topography, geomorphology and other regional information remains the most active area of research in the field of hydrology. In the developing countries, some thumb rules and very old equations are in practice for designing water resources structures which sometimes provide erroneous results. In the proposed study, regional relationships have been developed for computation of peak velocity and scale parameters of Nash model using geomorphological and fluvial characteristics of 41 watersheds of varying characteristics in Central India region. The regional relationships developed to determine scale parameter (k) of Nash model from a morpho-fluvial factor, has facilitated derivation of at-site regional and regional only instantaneous unit hydrograph (IUH), unit hydrograph (UH) and direct surface runoff (DSRO). The performance of proposed regional model has been evaluated using spatial correlation coefficient, integral square error, relative mean absolute error, root mean square error, relative error in peak, coefficient of residual mass and model efficiency. The response of proposed regional model have been found comparable with the observed values as the Nash-Sutcliffe efficiency of proposed model during calibration varies from 69.7 % to 95.2 % for site specific approach, 60.6 % to 97.7 % for at-site regional and 67.1 % to 98.7 % for regional only approach. Similarly, the performance of proposed model have been found satisfactorily during validation as the efficiency varies from 81.3 % to 99.9 % for site specific approach, 83.5 % to 99.9 % for at-site regional and 82.7 % to 99.9 % for regional only approach. The simple regional relationships developed in the study can be used for event based rainfall-runoff modeling and estimation of design flood in ungauged catchments of central Indian region. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & A. Lohani & Rakesh Kumar, 2014. "Development of Geomorphology Based Regional Nash Model for Data Scares Central India Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 351-371, January.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:2:p:351-371
    DOI: 10.1007/s11269-013-0486-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0486-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0486-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad, 2009. "Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2417-2435, September.
    2. S. Sarkar & R. Rai, 2011. "Flood Inundation Modeling Using Nakagami-m Distribution Based GIUH for a Partially Gauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3805-3835, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Grum & B. A. Abebe & A. M. Degu & H. Goitom & K. Woldearegay & R. Hessel & C. J. Ritsema & V. Geissen, 2023. "Evaluation of the Velocity Parameter Estimation Methods in a Geomorphological Instantaneous Unit Hydrograph (GIUH) Model for Simulating Flood Hydrograph in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 157-173, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad & Hashim Hashmi, 2010. "Estimation of a Unique Pair of Nash Model Parameters: An Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2971-2989, September.
    2. Jet-chau Wen & Yen-jen Lee & Shin-jen Cheng & Ju-huang Lee, 2014. "Changes of rural to urban areas in hydrograph characteristics on watershed divisions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 887-909, November.
    3. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    4. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    5. Marcelle Baptista & Ricardo Valcarcel & Vandré Maya & Fernando Canto, 2014. "Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Paraíba do Sul River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4781-4793, October.
    6. Javad Ahadiyan & Farhad Bahmanpouri & Atefeh Adeli & Carlo Gualtieri & Alireza Khoshkonesh, 2022. "Riprap Effect on Hydraulic Fracturing Process of Cohesive and Non-cohesive Protective Levees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 625-639, January.
    7. Fares Laouacheria & Rachid Mansouri, 2015. "Comparison of WBNM and HEC-HMS for Runoff Hydrograph Prediction in a Small Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2485-2501, June.
    8. Anil Kumar, 2015. "Geomorphologic Instantaneous Unit Hydrograph Based Hydrologic Response Models for Ungauged Hilly Watersheds in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 863-883, February.
    9. Chun-dan Cheng & Shin-jen Cheng & Jet-chau Wen & Ju-huang Lee, 2012. "Effects of Raingauge Distribution on Estimation Accuracy of Areal Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:2:p:351-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.