IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i4p1013-1031.html
   My bibliography  Save this article

Convergence of a Hydraulic Solver with Pressure-Dependent Demands

Author

Listed:
  • Yu. Kovalenko
  • N. Gorev
  • I. Kodzhespirova
  • E. Prokhorov
  • G. Trapaga

Abstract

This paper analyzes the convergence of a pressure-driven analysis (PDA) model of a water distribution network solver based on Todini’s global gradient algorithm. The PDA model is constructed by embedding a pressure−demand relationship in the EPANET simulator code. To avoid spurious convergence, a residual-based convergence error was used. The introduction of pressure-dependent demands is shown to result in a far poorer convergence. The study of solver convergence as a function of the smoothness of the pressure−demand curve has demonstrated that, statistically, a smooth pressure−demand relationship gives a somewhat better convergence. To improve convergence, use was made of a quadratic approximation of the Hazen–Williams head loss−flow relationship in the vicinity of zero and the correct implementation of the Darcy−Weisbach formula in the solver. To further improve convergence, an iteration step control technique called the line search was used. The analysis of solver convergence for different line search variants has shown that the line search in its usual form is not efficient enough and may result in poorer convergence. A necessary error decrease algorithm, whose use in the line search improves solver convergence, is proposed. It is shown that due to the convergence improvement methods the convergence of the PDA solver is somewhat better than that of the demand-driven analysis solver and sufficient for direct problems such as design, for example. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Yu. Kovalenko & N. Gorev & I. Kodzhespirova & E. Prokhorov & G. Trapaga, 2014. "Convergence of a Hydraulic Solver with Pressure-Dependent Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1013-1031, March.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:4:p:1013-1031
    DOI: 10.1007/s11269-014-0531-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0531-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0531-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calvin Siew & Tiku Tanyimboh, 2012. "Pressure-Dependent EPANET Extension," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1477-1498, April.
    2. Nikolai Gorev & Inna Kodzhespirova & Yuriy Kovalenko & Rogelio Álvarez & Eugenio Prokhorov & Alfredo Ramos, 2011. "Evolutionary Testing of Hydraulic Simulator Functionality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1935-1947, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2017. "Integration of Hydraulic and Water Quality Modelling in Distribution Networks: EPANET-PMX," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4485-4503, November.
    2. P. Sivakumar & R. Prasad, 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3271-3290, August.
    3. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    4. Carlo Ciaponi & Luigi Franchioli & Enrico Murari & Sergio Papiri, 2015. "Procedure for Defining a Pressure-Outflow Relationship Regarding Indoor Demands in Pressure-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 817-832, February.
    5. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2016. "Investigation into the Pressure-Driven Extension of the EPANET Hydraulic Simulation Model for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5351-5367, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Takbiri & Abbas Afshar, 2012. "Multi-Objective Optimization of Fusegates System under Hydrologic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2323-2345, June.
    2. Shweta Rathi & Rajesh Gupta & Swapnil Kamble & Aabha Sargaonkar, 2016. "Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2671-2685, June.
    3. Ping He & Tao Tao & Kunlun Xin & Shuping Li & Hexiang Yan, 2016. "Modelling Water Distribution Systems with Deficient Pressure: An Improved Iterative Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 593-606, January.
    4. Salah Saleh & Tiku Tanyimboh, 2013. "Coupled Topology and Pipe Size Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4795-4814, November.
    5. P. Sivakumar & R. Prasad, 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3271-3290, August.
    6. Andrea Menapace & Diego Avesani, 2019. "Global Gradient Algorithm Extension to Distributed Pressure Driven Pipe Demand Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1717-1736, March.
    7. D. Paez & C. R. Suribabu & Y. Filion, 2018. "Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2837-2846, June.
    8. Tonino Liserra & Marco Maglionico & Valentina Ciriello & Vittorio Di Federico, 2014. "Evaluation of Reliability Indicators for WDNs with Demand-Driven and Pressure-Driven Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1201-1217, March.
    9. Nikolai Gorev & Inna Kodzhespirova, 2013. "Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3623-3630, August.
    10. Andrea Menapace & Diego Avesani & Maurizio Righetti & Alberto Bellin & Giuseppe Pisaturo, 2018. "Uniformly Distributed Demand EPANET Extension," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2165-2180, April.
    11. Nikolai B. Gorev & Vyacheslav N. Gorev & Inna F. Kodzhespirova & Igor A. Shedlovsky & P. Sivakumar, 2022. "Dealing with Zero Flows in the Simulation of Water Distribution Networks with Low-Resistance Pipes Using the Global Gradient Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1679-1691, March.
    12. Sanjeeb Mohapatra & Aabha Sargaonkar & Pawan Labhasetwar, 2014. "Distribution Network Assessment using EPANET for Intermittent and Continuous Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3745-3759, September.
    13. Ping He & Tao Tao & Kunlun Xin & Shuping Li & Hexiang Yan, 2016. "Modelling Water Distribution Systems with Deficient Pressure: An Improved Iterative Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 593-606, January.
    14. Jose-Luis Molina & Raziyeh Farmani & John Bromley, 2011. "Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3883-3909, November.
    15. Carlo Ciaponi & Luigi Franchioli & Enrico Murari & Sergio Papiri, 2015. "Procedure for Defining a Pressure-Outflow Relationship Regarding Indoor Demands in Pressure-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 817-832, February.
    16. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.
    17. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:4:p:1013-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.