Assessment of Environmental Water Cost Through Physical Hydronomics
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-011-9786-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martínez, Amaya & Uche, Javier, 2010. "Chemical exergy assessment of organic matter in a water flow," Energy, Elsevier, vol. 35(1), pages 77-84.
- Valero, Alicia & Valero, Antonio & Arauzo, Inmaculada, 2008. "Evolution of the decrease in mineral exergy throughout the 20th century. The case of copper in the US," Energy, Elsevier, vol. 33(2), pages 107-115.
- Cleveland, Cutler J. & Ruth, Matthias, 1997. "When, where, and by how much do biophysical limits constrain the economic process?: A survey of Nicholas Georgescu-Roegen's contribution to ecological economics," Ecological Economics, Elsevier, vol. 22(3), pages 203-223, September.
- Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
- Szargut, Jan T., 2004. "Optimization of the design parameters aiming at the minimization of the depletion of non-renewable resources," Energy, Elsevier, vol. 29(12), pages 2161-2169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- María M. Borrego-Marín & Carlos Gutiérrez-Martín & Julio Berbel, 2016. "Estimation of Cost Recovery Ratio for Water Services Based on the System of Environmental-Economic Accounting for Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 767-783, January.
- Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.
- María Borrego-Marín & Carlos Gutiérrez-Martín & Julio Berbel, 2016. "Estimation of Cost Recovery Ratio for Water Services Based on the System of Environmental-Economic Accounting for Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 767-783, January.
- Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
- Martínez, Amaya & Uche, Javier, 2010. "Chemical exergy assessment of organic matter in a water flow," Energy, Elsevier, vol. 35(1), pages 77-84.
- Martínez, A. & Uche, J. & Valero, A. & Valero-Delgado, A., 2010. "Environmental costs of a river watershed within the European water framework directive: Results from physical hydronomics," Energy, Elsevier, vol. 35(2), pages 1008-1016.
- Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
- Jeroen C. J. M. van den Bergh, 1999.
"Materials, Capital, Direct/Indirect Substitution, and Mass Balance Production Functions,"
Land Economics, University of Wisconsin Press, vol. 75(4), pages 547-561.
- Jeroen C.J.M. van den Bergh, 1998. "Materials, Capital, Direct/Indirect Substitution and Mass Balance Production Functions," Tinbergen Institute Discussion Papers 98-065/3, Tinbergen Institute.
- Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
- Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
- Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
- Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
- Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
- Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
- Lucas Bretschger, 2013.
"Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions,"
Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
- Lucas Bretschger, 2008. "Population growth and natural resource scarcity: long-run development under seemingly unfavourable conditions," CER-ETH Economics working paper series 08/87, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Lucas Bretschger, 2010. "Population Growth and Natural Resource Scarcity: long-run development under seemingly unfavourable conditions," OxCarre Working Papers 037, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
- Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
- Dodo J. Thampapillai, 2016. "Ezra Mishan’S Cost Of Economic Growth: Evidence From The Entropy Of Environmental Capital," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(03), pages 1-10, June.
- Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
- Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
- An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
- Ayres, Robert U. & van den Bergh, Jeroen C.J.M., 2005. "A theory of economic growth with material/energy resources and dematerialization: Interaction of three growth mechanisms," Ecological Economics, Elsevier, vol. 55(1), pages 96-118, October.
- Sylvie Ferrari & Stéphane Genoud & Jean-Baptiste Lesourd, 2001. "Thermodynamics and economics: Towards exergy-based indicators of sustainable development," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 137(III), pages 319-336, September.
- Couix, Quentin, 2020.
"Georgescu-Roegen's Flow-Fund Theory of Production in Retrospect,"
Ecological Economics, Elsevier, vol. 176(C).
- Quentin Couix, 2020. "Georgescu-Roegen's Flow-Fund Theory of Production in Retrospect," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03226587, HAL.
- Quentin Couix, 2020. "Georgescu-Roegen's Flow-Fund Theory of Production in Retrospect," Post-Print hal-03226587, HAL.
More about this item
Keywords
Water framework directive; Exergy; Water costs; Physical Hydronomics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:12:p:2931-2949. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.