IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i9p1311-1324.html
   My bibliography  Save this article

Modeling of Water Main Failure Rates Using the Log-linear ROCOF and the Power Law Process

Author

Listed:
  • S. Park
  • H. Jun
  • B. Kim
  • G. Im

Abstract

This paper presents applications of the log-linear ROCOF and the power law process to model the failure rate and estimate the economically optimal replacement time of the individual pipes in a water distribution system. The performance of the two failure rate models is examined using the maximized log-likelihoods for different modeling approaches in which the method of observing failures differs. The optimal replacement time equations for the two models are developed by applying the methodology of Loganathan et al. (J Water Resour Plan Manage ASCE 128(4):271–279, 2002) for the case in which modified time scales are used. It was found that the log-linear ROCOF showed better performance than the power law process when the ‘failure-time-based’ method is used. Furthermore, the ‘failure-time-based’ method is proved to be superior compared to the ‘failure-number-based’ method for the water mains under study, implying that recording each failure time results in better modeling of the failure rate than observing failure numbers in some time intervals. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • S. Park & H. Jun & B. Kim & G. Im, 2008. "Modeling of Water Main Failure Rates Using the Log-linear ROCOF and the Power Law Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1311-1324, September.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:9:p:1311-1324
    DOI: 10.1007/s11269-007-9227-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-007-9227-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-007-9227-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    2. Kabir, Golam & Tesfamariam, Solomon & Sadiq, Rehan, 2015. "Predicting water main failures using Bayesian model averaging and survival modelling approach," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 498-514.
    3. Symeon Christodoulou & Alexandra Deligianni, 2010. "A Neurofuzzy Decision Framework for the Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 139-156, January.
    4. Suwan Park & Hwandon Jun & Newland Agbenowosi & Bong Kim & Kiyoung Lim, 2011. "The Proportional Hazards Modeling of Water Main Failure Data Incorporating the Time-dependent Effects of Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 1-19, January.
    5. Andrés Carrión & Hernando Solano & María Gamiz & Ana Debón, 2010. "Evaluation of the Reliability of a Water Supply Network from Right-Censored and Left-Truncated Break Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2917-2935, September.
    6. Stavroula Tsitsifli & Vasilis Kanakoudis & Ioannis Bakouros, 2011. "Pipe Networks Risk Assessment Based on Survival Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3729-3746, November.
    7. Chih-Liang Kuo & Nien-Sheng Hsu, 2011. "An Optimization Model for Crucial Key Pipes and Mechanical Reliability: A Case Study on a Water Distribution System in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 763-775, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:9:p:1311-1324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.