IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v18y2004i5p407-423.html
   My bibliography  Save this article

Spatial Decision Support System for Watershed Management

Author

Listed:
  • K. Rao
  • D. Kumar

Abstract

A prototype spatial decision support system (SDSS) is presented for watershed management. The SDSS integrates landuse/landcover derived from the remote sensing data, real-time hydrological data, geographic information system, and a model-based subsystem for computing soil loss, land capability classification and engineering measures. A graphical user interface has been developed to allow effective use by decision makers. The model-based subsystem employs a process-based soil erosion model to compute soil loss in spatial environment. Computed pixel-based soil loss information is an input to the land capability classification and watershed management modules. The developed SDSS can help the end users in avoiding the laborious procedures of soil erosion calculations and analysing various thematic layers to get suitable watershed management practices. The SDSS for watershed management is applied to the Tones watershed in India to compute soil loss, to prioritise watersheds, and to suggest various watershed management practices. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • K. Rao & D. Kumar, 2004. "Spatial Decision Support System for Watershed Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 407-423, October.
  • Handle: RePEc:spr:waterr:v:18:y:2004:i:5:p:407-423
    DOI: 10.1023/B:WARM.0000049135.79227.f9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:WARM.0000049135.79227.f9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:WARM.0000049135.79227.f9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathon Chill & Larry Mays, 2013. "Determination of the Optimal Location for Developments to Minimize Detention Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5089-5100, December.
    2. François Colin & Serge Guillaume & Bruno Tisseyre, 2011. "Small Catchment Agricultural Management Using Decision Variables Defined at Catchment Scale and a Fuzzy Rule-Based System: A Mediterranean Vineyard Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2649-2668, September.
    3. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    4. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    5. Martin Volk & Jesko Hirschfeld & Gerd Schmidt & Carsten Bohn & Alexandra Dehnhardt & Stefan Liersch & Leo Lymburner, 2007. "A SDSS-based Ecological-economic Modelling Approach for Integrated River Basin Management on Different Scale Levels – The Project FLUMAGIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(12), pages 2049-2061, December.
    6. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    7. Anil Misra & Ankit Pachouri & Amandeep Kaur, 2015. "Watershed Management Structures and Decision Making Frameworks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4849-4861, October.
    8. Ioannidou, Christina & O’Hanley, Jesse R., 2018. "Eco-friendly location of small hydropower," European Journal of Operational Research, Elsevier, vol. 264(3), pages 907-918.
    9. T. Reshma & K. Reddy & Deva Pratap & Mehdi Ahmedi & V. Agilan, 2015. "Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4589-4606, October.
    10. Erica Gaddis & Alexey Voinov, 2010. "Spatially Explicit Modeling of Land Use Specific Phosphorus Transport Pathways to Improve TMDL Load Estimates and Implementation Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1621-1644, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:18:y:2004:i:5:p:407-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.