IDEAS home Printed from https://ideas.repec.org/a/spr/trosos/v15y2021i2d10.1007_s12626-021-00084-7.html
   My bibliography  Save this article

A Novel Item Cluster-Based Collaborative Filtering Recommendation System

Author

Listed:
  • Yuching Lu

    (Iwate Prefectural University)

  • Koki Tozuka

    (Iwate Prefectural University)

  • Goutam Chakraborty

    (Iwate Prefectural University)

  • Masafumi Matsuhara

    (Iwate Prefectural University)

Abstract

Recent exponential expansion of users adopting to applications on the mobile internet, like e-commerce and social networks, warrants mining of the huge data collected from users’ past actions, for improving businesses and services. The core step for mining is to cluster the data meaningfully, conforming to the application. Social network data are structured, and graphical presentation reveals that structure. Therefore, graph clustering is an effective way to divulge the underlying structure in the data. For clustering, calculating similarity between a pair of vectors is the first step. The large dimension of the data, which is often noisy and sparse, makes distance measurement hard. In high dimension, most of the conventional distance metrics fail to work, as the data points are distributed over the surface of the high-dimensional hyper-space. The traditional concept of similarity, and nearest-neighbor does not hold. The variance of distance between any pair of points shrinks as the dimension increases. In this work, we investigate the efficacy of various similarity measures and clustering algorithms on high dimensional data. We experimented with a real-world high-dimensional matrix data, the ratings of movies by users. Clustering of movie items depends on a number of factors like movie genre, actors, directors, prominent acclaimed movie or an obscure one, etc. Different similarity measurements and clustering algorithms were experimented. Clustering results were evaluated by matching with known annotations of the movies. Finally, we proposed a novel recommendation algorithm based on item clustering. Its performance was evaluated with different distance metrics and clustering algorithms. Methods elaborated are applicable to other structured data generated in social network applications, or in biological investigations.

Suggested Citation

  • Yuching Lu & Koki Tozuka & Goutam Chakraborty & Masafumi Matsuhara, 2021. "A Novel Item Cluster-Based Collaborative Filtering Recommendation System," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 327-346, November.
  • Handle: RePEc:spr:trosos:v:15:y:2021:i:2:d:10.1007_s12626-021-00084-7
    DOI: 10.1007/s12626-021-00084-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12626-021-00084-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12626-021-00084-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. William Day & Herbert Edelsbrunner, 1984. "Efficient algorithms for agglomerative hierarchical clustering methods," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 7-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    2. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    3. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    4. Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
    5. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    7. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    8. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    9. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    10. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    11. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    12. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    13. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    14. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    15. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    16. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    17. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    18. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    20. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:trosos:v:15:y:2021:i:2:d:10.1007_s12626-021-00084-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.