Location of rectilinear center trajectories
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02564785
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Morris, James G. & Norback, John P., 1983. "Linear facility location -- Solving extensions of the basic problem," European Journal of Operational Research, Elsevier, vol. 12(1), pages 90-94, January.
- Hiroshi Imai & D. T. Lee & Chung-Do Yang, 1992. "1-Segment Center Problems," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 426-434, November.
- H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Diaz-Banez, J. M. & Mesa, J. A. & Schobel, A., 2004. "Continuous location of dimensional structures," European Journal of Operational Research, Elsevier, vol. 152(1), pages 22-44, January.
- Diaz-Banez, J. M. & Mesa, J. A., 2001. "Fitting rectilinear polygonal curves to a set of points in the plane," European Journal of Operational Research, Elsevier, vol. 130(1), pages 214-222, April.
- Rafael Blanquero & Emilio Carrizosa & Pierre Hansen, 2009. "Locating Objects in the Plane Using Global Optimization Techniques," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 837-858, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rafael Blanquero & Emilio Carrizosa & Pierre Hansen, 2009. "Locating Objects in the Plane Using Global Optimization Techniques," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 837-858, November.
- Okabe, Atsuyuki & Suzuki, Atsuo, 1997. "Locational optimization problems solved through Voronoi diagrams," European Journal of Operational Research, Elsevier, vol. 98(3), pages 445-456, May.
- A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
- Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
- Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
- Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
- AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.
- Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Grzegorz Tarczyński, 2012. "Analysis of the impact of storage parameters and the size of orders on the choice of the method for routing order picking," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(4), pages 105-120.
- Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Graph reduction for the planar Travelling Salesman Problem," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
- Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
- Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
- Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
- Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
- Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
- Hsieh, Ling-Feng & Huang, Yi-Chen, 2011. "New batch construction heuristics to optimise the performance of order picking systems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 618-630, June.
- Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
- Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
- R. Dekker & M. B. M. de Koster & K. J. Roodbergen & H. van Kalleveen, 2004. "Improving Order-Picking Response Time at Ankor's Warehouse," Interfaces, INFORMS, vol. 34(4), pages 303-313, August.
- Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
More about this item
Keywords
Rectilinear trajectory; center; extensive facility; 90C99; 93A99; 90D99;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:6:y:1998:i:2:p:159-177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.