IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v30y2022i3d10.1007_s11750-022-00639-z.html
   My bibliography  Save this article

Data-driven tuning for chance constrained optimization: analysis and extensions

Author

Listed:
  • Ashley M. Hou

    (University of Wisconsin-Madison Engineering Dr)

  • Line A. Roald

    (University of Wisconsin-Madison Engineering Dr)

Abstract

Many optimization problems involve uncertain parameters which, if not appropriately accounted for, can cause solution infeasiblity. In this work, we consider joint chance-constrained optimization problems, which require all constraints to hold with a given probability, and a two-step solution method based on iterative tuning. Previous work established an a priori feasibility guarantee for this tuning approach, which relies on an assumption that must be verified on a case-by-case basis. In this paper, we propose an empirical methodology using statistical hypothesis testing to assess the validity of this assumption, thus providing further insight into the validity of the a priori guarantee. In addition, we provide sample complexity results to assess the requisite amount of data for the tuning method. We find that for large scale optimization problems, the tuning approach may require significantly less samples than the scenario approach. We numerically assess these results via application to the optimal power flow problem as well as further assess the scalability of the method and the optimality and feasibility of solutions obtained from tuning.

Suggested Citation

  • Ashley M. Hou & Line A. Roald, 2022. "Data-driven tuning for chance constrained optimization: analysis and extensions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 649-682, October.
  • Handle: RePEc:spr:topjnl:v:30:y:2022:i:3:d:10.1007_s11750-022-00639-z
    DOI: 10.1007/s11750-022-00639-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-022-00639-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-022-00639-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    3. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    2. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    3. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    4. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    5. Seong-Cheol Kang & Theodora Brisimi & Ioannis Paschalidis, 2015. "Distribution-dependent robust linear optimization with applications to inventory control," Annals of Operations Research, Springer, vol. 231(1), pages 229-263, August.
    6. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    7. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    8. Lu, Mengshi & Nakao, Hideaki & Shen, Siqian & Zhao, Lin, 2021. "Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions," Omega, Elsevier, vol. 99(C).
    9. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    10. Weijun Xie & Shabbir Ahmed, 2020. "Bicriteria Approximation of Chance-Constrained Covering Problems," Operations Research, INFORMS, vol. 68(2), pages 516-533, March.
    11. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    12. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    13. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    14. Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
    15. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Discussion Paper 2015-030, Tilburg University, Center for Economic Research.
    16. Ernst Roos & Dick den Hertog, 2020. "Reducing Conservatism in Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1109-1127, October.
    17. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    18. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    19. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    20. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:30:y:2022:i:3:d:10.1007_s11750-022-00639-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.