On generalized semi-infinite programming
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02578994
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- G. Stein & G. Still, 2000. "On Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 443-458, February.
- H. T. Jongen & J. J. Rückmann & O. Stein, 1997. "Disjunctive Optimization: Critical Point Theory," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 321-336, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
- Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
- J. J. Rückmann & A. Shapiro, 1999. "First-Order Optimality Conditions in Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 677-691, June.
- Oliver Stein, 2001. "First-Order Optimality Conditions for Degenerate Index Sets in Generalized Semi-Infinite Optimization," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 565-582, August.
- Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
- T. Q. Son & J. J. Strodiot & V. H. Nguyen, 2009. "ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 389-409, May.
- O. I. Kostyukova & T. V. Tchemisova & S. A. Yermalinskaya, 2010. "Convex Semi-Infinite Programming: Implicit Optimality Criterion Based on the Concept of Immobile Indices," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 325-342, May.
- O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
- Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
- O. Kostyukova & T. Tchemisova, 2012. "Implicit optimality criterion for convex SIP problem with box constrained index set," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 475-502, July.
- J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
- Peter Kirst & Fabian Rigterink & Oliver Stein, 2017. "Global optimization of disjunctive programs," Journal of Global Optimization, Springer, vol. 69(2), pages 283-307, October.
- Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
- Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
- D. Aussel & J. J. Ye, 2008. "Quasiconvex Minimization on a Locally Finite Union of Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 1-16, October.
More about this item
Keywords
Generalized semi-infinite programming; extended Mangasarian-Fromovitz; Kuhn-Tucker and Abadie constraint qualification; Fritz-John condition; first and second order optimality conditions; optimal value function; directional differentiability; second order epiregularity; second order growth condition; 90C34; 90C30; 90C46; 65K05;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:14:y:2006:i:1:p:1-32. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.