IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v8y1999i1p95-116.html
   My bibliography  Save this article

An overview of bootstrap methods for estimating and predicting in time series

Author

Listed:
  • Ricardo Cao

Abstract

No abstract is available for this item.

Suggested Citation

  • Ricardo Cao, 1999. "An overview of bootstrap methods for estimating and predicting in time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 95-116, June.
  • Handle: RePEc:spr:testjl:v:8:y:1999:i:1:p:95-116
    DOI: 10.1007/BF02595864
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595864
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heimann, Günter & Kreiss, Jens-Peter, 1996. "Bootstrapping general first order autoregression," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 87-98, September.
    2. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    2. Ruiz-Medina, M.D. & Romano, E. & Fernández-Pascual, R., 2016. "Plug-in prediction intervals for a special class of standard ARH(1) processes," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 138-150.
    3. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Min-Hua Jen & Alex Bottle & Graham Kirkwood & Ron Johnston & Paul Aylin, 2011. "The performance of automated case-mix adjustment regression model building methods in a health outcome prediction setting," Health Care Management Science, Springer, vol. 14(3), pages 267-278, September.
    6. Xiujie Wang & Zihua Qu & Fuchang Tian & Yanpeng Wang & Ximin Yuan & Kui Xu, 2023. "Ice-jam flood hazard risk assessment under simulated levee breaches using the random forest algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 331-355, January.
    7. Castillo-Páez, Sergio & Fernández-Casal, Rubén & García-Soidán, Pilar, 2019. "A nonparametric bootstrap method for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    2. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    3. Meyer, Marco & Jentsch, Carsten & Kreiss, Jens-Peter, 2015. "Baxter`s inequality and sieve bootstrap for random fields," Working Papers 15-06, University of Mannheim, Department of Economics.
    4. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    5. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    6. DUFOUR, Jean-Marie & TAREK, Jouini, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 2005-09, Universite de Montreal, Departement de sciences economiques.
    7. Zacharias Psaradakis & Marián Vávra, 2017. "Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches," Birkbeck Working Papers in Economics and Finance 1706, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Agnieszka Jach & Piotr Kokoszka, 2004. "Subsampling Unit Root Tests for Heavy-Tailed Observations," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 73-97, March.
    9. Chafik Bouhaddioui & Roch Roy, 2004. "A Generalized Portmanteau Test for Independence of Two Infinite Order Vector Autoregressive Series," CIRANO Working Papers 2004s-06, CIRANO.
    10. Nikolay Gospodinov & Ye Tao, 2011. "Bootstrap Unit Root Tests in Models with GARCH(1,1) Errors," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 379-405, August.
    11. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    12. Jentsch, Carsten & Kreiss, Jens-Peter, 2010. "The multiple hybrid bootstrap -- Resampling multivariate linear processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2320-2345, November.
    13. Benkwitz, Alexander & Lütkepohl, Helmut & Neumann, Michael H., 1997. "Problems related to bootstrapping impulse responses of autoregressive processes," SFB 373 Discussion Papers 1997,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing," Cahiers de recherche 2005-12, Universite de Montreal, Departement de sciences economiques.
    15. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    16. Ionel Birgean & Lutz Kilian, 2002. "Data-Driven Nonparametric Spectral Density Estimators For Economic Time Series: A Monte Carlo Study," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 449-476.
    17. Gospodinov, Nikolay, 2002. "Median unbiased forecasts for highly persistent autoregressive processes," Journal of Econometrics, Elsevier, vol. 111(1), pages 85-101, November.
    18. Pesaran, Mohammad Hashem & Holly, Sean & Dees, Stephane & Smith, L. Vanessa, 2007. "Long Run Macroeconomic Relations in the Global Economy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-20.
    19. Martin Enilov & Giorgio Fazio & Atanu Ghoshray, 2023. "Global connectivity between commodity prices and national stock markets: A time‐varying MIDAS analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2607-2619, July.
    20. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:8:y:1999:i:1:p:95-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.