IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v4y1995i2p359-376.html
   My bibliography  Save this article

A recursive ARIMA-based procedure for disaggregating a time series variable using concurrent data

Author

Listed:
  • V. Guerrero
  • J. Martínez

Abstract

No abstract is available for this item.

Suggested Citation

  • V. Guerrero & J. Martínez, 1995. "A recursive ARIMA-based procedure for disaggregating a time series variable using concurrent data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 359-376, December.
  • Handle: RePEc:spr:testjl:v:4:y:1995:i:2:p:359-376
    DOI: 10.1007/BF02562632
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02562632
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02562632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nijman, T E & Palm, F C, 1986. "The Construction and Use of Approximations for Missing Quarterly Observations: A Model-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 47-58, January.
    2. Milton Friedman, 1962. "The Interpolation of Time Series by Related Series," NBER Books, National Bureau of Economic Research, Inc, number frie62-1.
    3. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    2. Mateusz Pipień & Sylwia Roszkowska, 2015. "Szacunki kwartalnego PKB w polskich województwach," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 5, pages 145-169.
    3. José Manuel Pavía & Bernardí Cabrer, 2008. "On Distributing Quarterly National Growth among Regions," Environment and Planning A, , vol. 40(10), pages 2453-2468, October.
    4. José Manuel Pavía, 2000. "Desagregación conjunta de series anuales: perturbaciones AR(1) multivariante," Investigaciones Economicas, Fundación SEPI, vol. 24(3), pages 727-737, September.
    5. Elizondo Rocío, 2012. "Monthly GDP estimates based on the IGAE," Working Papers 2012-11, Banco de México.
    6. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    7. Bernardí Cabrer-Borrás & Jose Manuel Pavía-Miralles, 2007. "On estimating contemporaneous quarterly regional GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 155-170.
    8. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnett, William A. & Su, Liting, 2017. "Data sources for the credit-card augmented Divisia monetary aggregates," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 899-910.
    2. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    3. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    4. Jean-Luc De Meulemeester, 1994. "Une évaluation empirique de la rationalité des étudiants et étudiantes belges (1954-1987)," Économie et Prévision, Programme National Persée, vol. 116(5), pages 137-153.
    5. Massimiliano Marcellino, 2007. "Pooling‐Based Data Interpolation and Backdating," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 53-71, January.
    6. Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
    7. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    8. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    9. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    10. Imad A. Moosa & Kelly Burns, 2013. "Interpolating flow and stock variables in a continuous-time dynamic framework," Applied Economics Letters, Taylor & Francis Journals, vol. 20(7), pages 621-625, May.
    11. Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    13. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    14. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
    15. Bernardí Cabrer-Borrás & Jose Manuel Pavía-Miralles, 2007. "On estimating contemporaneous quarterly regional GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 155-170.
    16. Rafael R. S. Guimaraes, 2022. "Deep Learning Macroeconomics," Papers 2201.13380, arXiv.org.
    17. Rossi, Lorenza & Zanetti Chini, Emilio, 2021. "Temporal disaggregation of business dynamics: New evidence for U.S. economy," Journal of Macroeconomics, Elsevier, vol. 69(C).
    18. Lars Peter Hansen & Thomas J. Sargent, 1982. "Formulating and estimating continuous time rational expectations models," Staff Report 75, Federal Reserve Bank of Minneapolis.
    19. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    20. José Manuel Pavía, 2000. "Desagregación conjunta de series anuales: perturbaciones AR(1) multivariante," Investigaciones Economicas, Fundación SEPI, vol. 24(3), pages 727-737, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:4:y:1995:i:2:p:359-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.