IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i4d10.1007_s11749-024-00938-6.html
   My bibliography  Save this article

Marginal analysis of count time series in the presence of missing observations

Author

Listed:
  • Simon Nik

    (Helmut Schmidt University)

Abstract

Time series in real-world applications often have missing observations, making typical analytical methods unsuitable. One method for dealing with missing data is the concept of amplitude modulation. While this principle works with any data, here, missing data for unbounded and bounded count time series are investigated, where tailor-made dispersion and skewness statistics are used for model diagnostics. General closed-form asymptotic formulas are derived for such statistics with only weak assumptions on the underlying process. Moreover, closed-form formulas are derived for the popular special cases of Poisson and binomial autoregressive processes, always under the assumption that missingness occurs. The finite-sample performances of the considered asymptotic approximations are analyzed with simulations. The practical application of the corresponding dispersion and skewness tests under missing data is demonstrated with three real data examples.

Suggested Citation

  • Simon Nik, 2024. "Marginal analysis of count time series in the presence of missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1105-1128, December.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00938-6
    DOI: 10.1007/s11749-024-00938-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00938-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00938-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Jonas Andersson & Dimitris Karlis, 2010. "Treating missing values in INAR(1) models: An application to syndromic surveillance data," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 12-19, January.
    3. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    4. Borges, Patrick & Molinares, Fabio Fajardo & Bourguignon, Marcelo, 2016. "A geometric time series model with inflated-parameter Bernoulli counting series," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 264-272.
    5. Christian H. Weiß & Murat Caner Testik, 2015. "On the Phase I analysis for monitoring time-dependent count processes," IISE Transactions, Taylor & Francis Journals, vol. 47(3), pages 294-306, March.
    6. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    2. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    3. Huaping Chen & Qi Li & Fukang Zhu, 2022. "A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 243-270, June.
    4. Kirchner, Matthias & Torrisi, Giovanni Luca, 2023. "Fluctuations and precise deviations of cumulative INAR time series," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 1-32.
    5. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    6. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    7. Nisreen Shamma & Mehrnaz Mohammadpour & Masoumeh Shirozhan, 2020. "A time series model based on dependent zero inflated counting series," Computational Statistics, Springer, vol. 35(4), pages 1737-1757, December.
    8. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    9. Weiß, Christian H., 2024. "On higher-order moments of INGARCH processes," Statistics & Probability Letters, Elsevier, vol. 214(C).
    10. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    11. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    12. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    13. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    14. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    15. Hanan Elsaied & Roland Fried, 2014. "Robust Fitting Of Inarch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 517-535, November.
    16. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    17. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    18. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    19. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    20. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00938-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.