IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1771-1780.html
   My bibliography  Save this article

INARCH(1) processes: Higher-order moments and jumps

Author

Listed:
  • Weiß, Christian H.

Abstract

The INARCH(1) model is a simple but practically relevant, two-parameter model for processes of overdispersed counts with an autoregressive serial dependence structure. We derive closed-form expressions for the joint (central) moments and cumulants of the INARCH(1) model up to order 4. These expressions are applied to derive the moments of jumps in INARCH(1) processes. We illustrate this kind of application with a real-data example, and outline further potential applications.

Suggested Citation

  • Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1771-1780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00224-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    3. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    4. Zhu, Fukang & Wang, Dehui, 2010. "Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 496-508, February.
    5. Weiß, Christian H., 2009. "Jumps in binomial AR(1) processes," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2012-2019, October.
    6. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    7. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    8. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    9. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Christian Weiß, 2009. "Modelling time series of counts with overdispersion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 507-519, November.
    11. Fukang Zhu & Dehui Wang, 2011. "Estimation and testing for a Poisson autoregressive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 211-230, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Nik & Christian H. Weiß, 2020. "CLAR(1) point forecasting under estimation uncertainty," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 489-516, November.
    2. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    2. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    3. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    4. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    5. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    6. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    7. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    8. Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
    9. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    10. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    11. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    12. Weiß, Christian H. & Schweer, Sebastian, 2016. "Bias corrections for moment estimators in Poisson INAR(1) and INARCH(1) processes," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 124-130.
    13. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    14. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    15. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    16. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    17. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
    18. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    19. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    20. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    21. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1771-1780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.