IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v29y2020i3d10.1007_s11749-019-00678-y.html
   My bibliography  Save this article

A goodness-of-fit test for regression models with spatially correlated errors

Author

Listed:
  • Andrea Meilán-Vila

    (Universidade da Coruña)

  • Jean D. Opsomer

    (Westat)

  • Mario Francisco-Fernández

    (Universidade da Coruña)

  • Rosa M. Crujeiras

    (Universidade de Santiago de Compostela)

Abstract

The problem of assessing a parametric regression model in the presence of spatial correlation is addressed in this work. For that purpose, a goodness-of-fit test based on a $$L_2$$ L 2 -distance comparing a parametric and nonparametric regression estimators is proposed. Asymptotic properties of the test statistic, both under the null hypothesis and under local alternatives, are derived. Additionally, a bootstrap procedure is designed to calibrate the test in practice. Finite sample performance of the test is analyzed through a simulation study, and its applicability is illustrated using a real data example.

Suggested Citation

  • Andrea Meilán-Vila & Jean D. Opsomer & Mario Francisco-Fernández & Rosa M. Crujeiras, 2020. "A goodness-of-fit test for regression models with spatially correlated errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 728-749, September.
  • Handle: RePEc:spr:testjl:v:29:y:2020:i:3:d:10.1007_s11749-019-00678-y
    DOI: 10.1007/s11749-019-00678-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00678-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00678-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Diblasi & A. W. Bowman, 2001. "On the Use of the Variogram in Checking for Independence in Spatial Data," Biometrics, The International Biometric Society, vol. 57(1), pages 211-218, March.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    3. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    4. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    5. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    6. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Mario Francisco‐Fernández & Alejandro Quintela‐del‐Río & Rubén Fernández‐Casal, 2012. "Nonparametric methods for spatial regression. An application to seismic events," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 85-93, February.
    7. Crujeiras, Rosa M. & Van Keilegom, Ingrid, 2010. "Least squares estimation of nonlinear spatial trends," LIDAM Reprints ISBA 2010007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Stefanie Biedermann & Holger Dette, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 417-438, December.
    9. Biedermann, Stefanie & Dette, Holger, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," Technical Reports 2000,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Gonzalez Manteiga, W. & Vilar Fernandez, J. M., 1995. "Testing linear regression models using non-parametric regression estimators when errors are non-independent," Computational Statistics & Data Analysis, Elsevier, vol. 20(5), pages 521-541, November.
    11. Crujeiras, Rosa M. & Van Keilegom, Ingrid, 2010. "Least squares estimation of nonlinear spatial trends," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 452-465, February.
    12. J. Opsomer & M. Francisco-Fernández, 2010. "Finding local departures from a parametric model using nonparametric regression," Statistical Papers, Springer, vol. 51(1), pages 69-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    3. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
    4. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    5. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    6. Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
    7. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    8. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    9. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    10. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    11. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    12. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    13. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    14. Hira L. Koul & Fang Li, 2020. "Comparing two nonparametric regression curves in the presence of long memory in covariates and errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 499-517, May.
    15. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    16. Anouar El Ghouch & Marc G. Genton & Taoufik Bouezmarni, 2013. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 455-470, September.
    17. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    18. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
    19. J. S. Allison & M. Hušková & S. G. Meintanis, 2018. "Testing the adequacy of semiparametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-94, March.
    20. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:29:y:2020:i:3:d:10.1007_s11749-019-00678-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.