IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i4p1092-1108.html
   My bibliography  Save this article

Generalized Maximum Spacing Estimation for Multivariate Observations

Author

Listed:
  • Kristi Kuljus
  • Bo Ranneby

Abstract

type="main" xml:id="sjos12153-abs-0001"> In this paper, the maximum spacing method is considered for multivariate observations. Nearest neighbour balls are used as a multidimensional analogue to univariate spacings. A class of information-type measures is used to generalize the concept of maximum spacing estimators. Weak and strong consistency of these generalized maximum spacing estimators are proved both when the assigned model class is correct and when the true density is not a member of the model class. An example of the generalized maximum spacing method in model validation context is discussed.

Suggested Citation

  • Kristi Kuljus & Bo Ranneby, 2015. "Generalized Maximum Spacing Estimation for Multivariate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1092-1108, December.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:1092-1108
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12153
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongzhao Shao & Marjorie Hahn, 1999. "Strong Consistency of the Maximum Product of Spacings Estimates with Applications in Nonparametrics and in Estimation of Unimodal Densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 31-49, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristi Kuljus & Bo Ranneby, 2021. "Maximum spacing estimation for continuous time Markov chains and semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 421-443, July.
    2. M. Ekström & S. M. Mirakhmedov & S. Rao Jammalamadaka, 2020. "A class of asymptotically efficient estimators based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 617-636, September.
    3. Aya-Moreno, Carlos & Geenens, Gery & Penev, Spiridon, 2018. "Shape-preserving wavelet-based multivariate density estimation," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 30-47.
    4. Kristi Kuljus & Bo Ranneby, 2020. "Asymptotic normality of generalized maximum spacing estimators for multivariate observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 968-989, September.
    5. Rahul Singh & Neeraj Misra, 2023. "Some parametric tests based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 211-231, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Jiménez & J. E. Yukich, 2002. "Asymptotics for Statistical Distances Based on Voronoi Tessellations," Journal of Theoretical Probability, Springer, vol. 15(2), pages 503-541, April.
    2. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    3. Chao Huang & Jin-Guan Lin, 2014. "Modified maximum spacings method for generalized extreme value distribution and applications in real data analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 867-894, October.
    4. Magnus Ekström, 2013. "Powerful Parametric Tests Based on Sum-Functions of Spacings," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 886-898, December.
    5. M. Ekström & S. M. Mirakhmedov & S. Rao Jammalamadaka, 2020. "A class of asymptotically efficient estimators based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 617-636, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:1092-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.