IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v26y2017i4d10.1007_s11749-017-0559-x.html
   My bibliography  Save this article

Comments on: High-dimensional simultaneous inference with the bootstrap

Author

Listed:
  • Hanzhong Liu

    (Tsinghua University)

  • Bin Yu

    (University of California
    University of California)

Abstract

We provide comments on the article “High-dimensional simultaneous inference with the bootstrap” by Ruben Dezeure, Peter Buhlmann and Cun-Hui Zhang.

Suggested Citation

  • Hanzhong Liu & Bin Yu, 2017. "Comments on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 740-750, December.
  • Handle: RePEc:spr:testjl:v:26:y:2017:i:4:d:10.1007_s11749-017-0559-x
    DOI: 10.1007/s11749-017-0559-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-017-0559-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-017-0559-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    2. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.
    3. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    4. Kendrick N. Kay & Thomas Naselaris & Ryan J. Prenger & Jack L. Gallant, 2008. "Identifying natural images from human brain activity," Nature, Nature, vol. 452(7185), pages 352-355, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    2. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-54, February.
    3. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    4. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Xiaorui Zhu & Yichen Qin & Peng Wang, 2023. "Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models," Papers 2307.07574, arXiv.org.
    6. Martin C. Arnold & Thilo Reinschlussel, 2024. "Bootstrap Adaptive Lasso Solution Path Unit Root Tests," Papers 2409.07859, arXiv.org.
    7. Jeng, X. Jessie & Chen, Xiongzhi, 2019. "Predictor ranking and false discovery proportion control in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 163-175.
    8. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    9. Matthias Löffler & Richard Nickl, 2017. "Comments on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 731-733, December.
    10. Zhu, Ke & Liu, Hanzhong, 2022. "Confidence intervals for parameters in high-dimensional sparse vector autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    12. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    13. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    14. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    16. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    17. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    18. Jacob M. Paul & Martijn Ackooij & Tuomas C. Cate & Ben M. Harvey, 2022. "Numerosity tuning in human association cortices and local image contrast representations in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    20. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:26:y:2017:i:4:d:10.1007_s11749-017-0559-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.