IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v22y2013i1p122-158.html
   My bibliography  Save this article

Wavelet penalized likelihood estimation in generalized functional models

Author

Listed:
  • Irène Gannaz

Abstract

The paper deals with generalized functional regression. The aim is to estimate the influence of covariates on observations, drawn from an exponential distribution. The link considered has a semiparametric expression: if we are interested in a functional influence of some covariates, we authorize others to be modeled linearly. We thus consider a generalized partially linear regression model with unknown regression coefficients and an unknown nonparametric function. We present a maximum penalized likelihood procedure to estimate the components of the model introducing penalty based wavelet estimators. Asymptotic rates of the estimates of both the parametric and the nonparametric part of the model are given and quasi-minimax optimality is obtained under usual conditions in literature. We establish in particular that the ℓ 1 -penalty leads to an adaptive estimation with respect to the regularity of the estimated function. An algorithm based on backfitting and Fisher-scoring is also proposed for implementation. Simulations are used to illustrate the finite sample behavior, including a comparison with kernel- and spline-based methods. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Irène Gannaz, 2013. "Wavelet penalized likelihood estimation in generalized functional models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 122-158, March.
  • Handle: RePEc:spr:testjl:v:22:y:2013:i:1:p:122-158
    DOI: 10.1007/s11749-012-0310-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-012-0310-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-012-0310-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    2. Anestis Antoniadis & Irène Gijbels & Mila Nikolova, 2011. "Penalized likelihood regression for generalized linear models with non-quadratic penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 585-615, June.
    3. Chang, Xiao-Wen & Qu, Leming, 2004. "Wavelet estimation of partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 31-48, August.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    2. Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers 17/12, Institute for Fiscal Studies.
    5. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    6. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    7. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers CWP17/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.
    9. Alan T. K. Wan & Jinhong You & Riquan Zhang, 2016. "A Seemingly Unrelated Nonparametric Additive Model with Autoregressive Errors," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 894-928, May.
    10. N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
    11. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
    12. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    13. Liu, Yufeng & Helen Zhang, Hao & Park, Cheolwoo & Ahn, Jeongyoun, 2007. "Support vector machines with adaptive Lq penalty," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6380-6394, August.
    14. Ai, Chunrong & You, Jinhong & Zhou, Yong, 2011. "Statistical inference using a weighted difference-based series approach for partially linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 601-618, March.
    15. Yingying Fan & Jinchi Lv, 2013. "Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1044-1061, September.
    16. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    17. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    18. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    19. Madison Giacofci & Sophie Lambert-Lacroix & Franck Picard, 2018. "Minimax wavelet estimation for multisample heteroscedastic nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 238-261, January.
    20. Kapetanios, George & Zikes, Filip, 2018. "Time-varying Lasso," Economics Letters, Elsevier, vol. 169(C), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:22:y:2013:i:1:p:122-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.