IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i1p52-71.html
   My bibliography  Save this article

Penalized h‐likelihood approach for variable selection in AFT random‐effect models

Author

Listed:
  • Eunyoung Park
  • Sookhee Kwon
  • Jihoon Kwon
  • Richard Sylvester
  • Il Do Ha

Abstract

Survival models allowing for random effects (e.g., frailty models) have been widely used for analyzing clustered time‐to‐event data. Accelerated failure time (AFT) models with random effects are useful alternatives to frailty models. Because survival times are directly modeled, interpretation of the fixed and random effects is straightforward. Moreover, the fixed effect estimates are robust against various violations of the assumed model. In this paper, we propose a penalized h‐likelihood (HL) procedure for variable selection of fixed effects in the AFT random‐effect models. For the purpose of variable selection, we consider three penalty functions, namely, least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and HL. We demonstrate via simulation studies that the proposed variable selection procedure is robust against the misspecification of the assumed model. The proposed method is illustrated using data from a bladder cancer clinical trial.

Suggested Citation

  • Eunyoung Park & Sookhee Kwon & Jihoon Kwon & Richard Sylvester & Il Do Ha, 2020. "Penalized h‐likelihood approach for variable selection in AFT random‐effect models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(1), pages 52-71, February.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:1:p:52-71
    DOI: 10.1111/stan.12179
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12179
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip Hougaard, 1999. "Fundamentals of Survival Data," Biometrics, The International Biometric Society, vol. 55(1), pages 13-22, March.
    2. Ha, Il Do & Sylvester, Richard & Legrand, Catherine & MacKenzie, Gilbert, 2011. "Frailty modelling for survival data from multi-centre clinical trials," LIDAM Reprints ISBA 2011060, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    4. Lee, Youngjo & Oh, Hee-Seok, 2014. "A new sparse variable selection via random-effect model," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 89-99.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. John P. Klein & Corey Pelz & Mei-jie Zhang, 1999. "Modeling Random Effects for Censored Data by a Multivariate Normal Regression Model," Biometrics, The International Biometric Society, vol. 55(2), pages 497-506, June.
    7. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    8. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    2. Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
    3. Li, Jianbo & Gu, Minggao & Zhang, Riquan, 2013. "Variable selection for general transformation models with right censored data via nonconcave penalties," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 445-456.
    4. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    5. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    6. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    7. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    8. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers 17/12, Institute for Fiscal Studies.
    9. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    10. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    11. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    12. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    13. Canhong Wen & Xueqin Wang & Shaoli Wang, 2015. "Laplace Error Penalty-based Variable Selection in High Dimension," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 685-700, September.
    14. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    15. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," SFB 649 Discussion Papers 2014-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    17. repec:hum:wpaper:sfb649dp2014-010 is not listed on IDEAS
    18. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    19. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers CWP17/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    21. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:1:p:52-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.