IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v17y2008i1p47-55.html
   My bibliography  Save this article

Rejoinder on: Augmenting the bootstrap to analyze high dimensional genomic data

Author

Listed:
  • Svitlana Tyekucheva
  • Francesca Chiaromonte

Abstract

No abstract is available for this item.

Suggested Citation

  • Svitlana Tyekucheva & Francesca Chiaromonte, 2008. "Rejoinder on: Augmenting the bootstrap to analyze high dimensional genomic data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 47-55, May.
  • Handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:47-55
    DOI: 10.1007/s11749-008-0107-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-008-0107-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-008-0107-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Dennis Cook & Bing Li & Francesca Chiaromonte, 2007. "Dimension reduction in regression without matrix inversion," Biometrika, Biometrika Trust, vol. 94(3), pages 569-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2010. "Measures of influence for the functional linear model with scalar response," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 327-339, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    2. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    3. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    4. Cook, R. Dennis & Forzani, Liliana & Su, Zhihua, 2016. "A note on fast envelope estimation," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 42-54.
    5. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    6. Ekvall, Karl Oskar, 2022. "Targeted principal components regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
    8. Yoo, Jae Keun, 2013. "Advances in seeded dimension reduction: Bootstrap criteria and extensions," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 70-79.
    9. Ghosh, Debashis, 2011. "Propensity score modelling in observational studies using dimension reduction methods," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 813-820, July.
    10. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
    11. Song, Jun & Kim, Kyongwon & Yoo, Jae Keun, 2023. "On a nonlinear extension of the principal fitted component model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    12. Guochang Wang & Beiting Liang & Hansheng Wang & Baoxue Zhang & Baojian Xie, 2021. "Dimension reduction for functional regression with a binary response," Statistical Papers, Springer, vol. 62(1), pages 193-208, February.
    13. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    14. Guochang Wang & Xinyuan Song, 2018. "Functional Sufficient Dimension Reduction for Functional Data Classification," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 250-272, July.
    15. Anne-Laure Boulesteix & Athanassios Kondylis & Nicole Krämer, 2008. "Comments on: Augmenting the bootstrap to analyze high dimensional genomic data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 31-35, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:47-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.