IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v78y2021i4d10.1007_s11235-021-00826-6.html
   My bibliography  Save this article

A secure and efficient key agreement framework for critical energy infrastructure using mobile device

Author

Listed:
  • Akber Ali Khan

    (Jamia Millia Islamia)

  • Vinod Kumar

    (University of Delhi)

  • Musheer Ahmad

    (Jamia Millia Islamia)

  • B. B. Gupta

    (National Institute of Technology Kurukshetra
    Asia University)

  • Musheer Ahmad

    (Jamia Millia Islamia)

  • Ahmed A. Abd El-Latif

    (Menoufia University)

Abstract

Internet of Energy (IoE) provides two-way communication for reform of energy utilization between service providers and consumers. To provide secure, efficient, and reliable operations in IoE should be protected from cyber-attacks. Many frameworks have been proposed so far to address security and privacy concerns of these systems. In the vehicle-grid system, we propose a useful mutual authenticated key agreement framework using elliptic curve cryptography and hash function. The aim of the proposed protocol is to maintain secure communication between vehicles and the grid system with reliable computation and communication costs. In the proposed protocol, a vehicular user securely access services that are provided by the grid server. We prove the security of the proposed framework in formal and informal ways. We also show the correctness of the mutual authentication and key agreement of this framework by using Burrows–Abadi–Needham logic. We provide formal security verification of the proposed protocol by using AVISPA tool. Further, we show that this work is better in terms of computation and communication costs compare to other related protocols in the same environment. As a result, the proposed framework is a real life-application in this system.

Suggested Citation

  • Akber Ali Khan & Vinod Kumar & Musheer Ahmad & B. B. Gupta & Musheer Ahmad & Ahmed A. Abd El-Latif, 2021. "A secure and efficient key agreement framework for critical energy infrastructure using mobile device," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(4), pages 539-557, December.
  • Handle: RePEc:spr:telsys:v:78:y:2021:i:4:d:10.1007_s11235-021-00826-6
    DOI: 10.1007/s11235-021-00826-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-021-00826-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-021-00826-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuwen Chen & José-Fernán Martínez & Pedro Castillejo & Lourdes López, 2017. "An Anonymous Authentication and Key Establish Scheme for Smart Grid: FAuth," Energies, MDPI, vol. 10(9), pages 1-23, September.
    2. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    3. Anupama Mishra & Neena Gupta & B. B. Gupta, 2021. "Defense mechanisms against DDoS attack based on entropy in SDN-cloud using POX controller," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 47-62, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengjun Cao, 2024. "Design issues in “a secure and efficient key agreement framework for critical energy infrastructure using mobile device”," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(3), pages 393-397, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    3. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    4. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
    5. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    6. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Jun Liu & Jinchun Chen & Chao Wang & Zhang Chen & Xinglei Liu, 2020. "Market Trading Model of Urban Energy Internet Based on Tripartite Game Theory," Energies, MDPI, vol. 13(7), pages 1-24, April.
    8. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    9. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    10. Anshuman Singh & Brij B. Gupta, 2022. "Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web-Enabled Computing Platforms: Issues, Challenges, and Future Research Directions," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 18(1), pages 1-43, January.
    11. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    12. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    13. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    15. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    16. Jianlong Wang & Weilong Wang & Yong Liu, 2024. "RETRACTED ARTICLE: Exploring the impact of clean energy interconnections on sustainable economic growth in China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-32, June.
    17. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    18. Zixiao Xu & Dechang Yang & Weilin Li, 2019. "Microgrid Group Trading Model and Solving Algorithm Based on Blockchain," Energies, MDPI, vol. 12(7), pages 1-19, April.
    19. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    20. Gupta, Brij B. & Gaurav, Akshat & Panigrahi, Prabin Kumar & Arya, Varsha, 2023. "Analysis of artificial intelligence-based technologies and approaches on sustainable entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:78:y:2021:i:4:d:10.1007_s11235-021-00826-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.