IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v71y2019i4d10.1007_s11235-018-0529-y.html
   My bibliography  Save this article

Beamforming with 2D-AOA estimation for pilot contamination reduction in massive MIMO

Author

Listed:
  • Ehab Ali

    (Universiti Kebangsaan Malaysia)

  • Mahamod Ismail

    (Universiti Kebangsaan Malaysia)

  • Rosdiadee Nordin

    (Universiti Kebangsaan Malaysia)

  • Nor Fadzilah Abdulah

    (Universiti Kebangsaan Malaysia)

Abstract

The upcoming fifth-generation wireless mobile systems are projected to be commercialized in the year 2020 and are set to play the main role in massive multiple input-multiple output (mMIMO) integrated with the technologies of beamforming antenna arrays. However, the performance of mMIMO is constrained by inter-cell interference from adjacent cells triggered by the reused pilot, an issue termed pilot contamination. To address this issue, this paper focuses on mitigating pilot contamination by implementing a suboptimal spatial source detection method based on the beamforming approach using a two-dimension-unitary estimation of the signal parameters through rotational invariance techniques algorithm. We jointly used 2D-AOA information (azimuth and elevation angles) and statistical channel estimations at the BSs to identify the channels correlation condition and evaluate the sum rate performance of users based on AOA. The detected signals from the uniform rectangular array are used to segregate the required signal from the interfering signal without any change to the pilot construction of the training signals. The performance of the minimum mean squared error beamforming (MMSE-beamforming) technique in the multi-cell mMIMO system of the aforementioned method is numerically evaluated and then compared with conventional methods that depend only on pilot identity information. The simulation reveals that the achievable sum rate gains of 2D-AOA and the pilot identity information techniques (best case) with respect to deterministic MMSE are 96.3% and 85.4%, respectively, thus showing the prospect of eliminating the majority of pilot contamination using the 2D-AOA estimation.

Suggested Citation

  • Ehab Ali & Mahamod Ismail & Rosdiadee Nordin & Nor Fadzilah Abdulah, 2019. "Beamforming with 2D-AOA estimation for pilot contamination reduction in massive MIMO," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 541-552, August.
  • Handle: RePEc:spr:telsys:v:71:y:2019:i:4:d:10.1007_s11235-018-0529-y
    DOI: 10.1007/s11235-018-0529-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-018-0529-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-018-0529-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed H. Alsharif & Rosdiadee Nordin, 2017. "Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 617-637, April.
    2. Ricardo Tadashi Kobayashi & Taufik Abrão, 2016. "Ordered MMSE–SIC via sorted QR decomposition in ill conditioned large-scale MIMO channels," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 335-346, October.
    3. Hossein Akhlaghpasand & S. Mohammad Razavizadeh, 2017. "Adaptive pilot decontamination in multi-cell massive MIMO networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(3), pages 515-522, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhinaba Dey & Prabina Pattanayak, 2022. "Inter-intra cellular pilot contamination mitigation for heterogeneous massive MIMO cellular systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 91-103, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Murkaz & Riaz Hussain & Junaid Ahmed & Muhammad Adil & Babatunji Omoniwa & Adeel Iqbal, 2018. "An intra–inter-cell device-to-device communication scheme to enhance 5G network throughput with delay modeling," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 69(4), pages 461-475, December.
    2. Mohammed H. Alsharif, 2017. "Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations," Energies, MDPI, vol. 10(3), pages 1-20, March.
    3. Cheng, Xiaoyuan & Hu, Yukun & Varga, Liz, 2022. "5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    4. Shaik Thaherbasha & Ravindra Dhuli, 2022. "Outage performance of NOMA over $$\alpha -\mu ,\;\eta -\mu \; and \;\alpha -\eta -\mu $$ α - μ , η - μ a n d α - η - μ faded channels with imperfect CSI and interference," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(2), pages 279-294, February.
    5. Asmae Mamane & M. Fattah & M. El Ghazi & M. El Bekkali, 2022. "5G enhanced mobile broadband multi-criteria scheduler for dense urban scenario," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 33-43, May.
    6. Minjoong Rim & Seungyeob Chae & Chung G. Kang, 2019. "MIMO receivers considering preamble collisions for grant-free random access in machine type communication systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(2), pages 185-191, February.
    7. Svetlana Rastvortseva & Elena Kameneva, 2024. "Development of national specialization in 5G technologies within the European Union," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 13(1), pages 1-21, December.
    8. Oughton, Edward J. & Lehr, William & Katsaros, Konstantinos & Selinis, Ioannis & Bubley, Dean & Kusuma, Julius, 2021. "Revisiting Wireless Internet Connectivity: 5G vs Wi-Fi 6," Telecommunications Policy, Elsevier, vol. 45(5).
    9. Rodrigo Calderón-Rico & Roberto Carrasco-Alvarez & Javier Vázquez Castillo, 2018. "Dynamic wavelet-based pilot allocation algorithm for OFDM-based cognitive radio systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(2), pages 193-200, June.
    10. Faizan Qamar & M. H. D. Nour Hindia & Kaharudin Dimyati & Kamarul Ariffin Noordin & Iraj Sadegh Amiri, 2019. "Interference management issues for the future 5G network: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 627-643, August.
    11. Juan Riol Martín & Raquel Pérez-Leal & Julio Navío-Marco, 2019. "Towards 5G: Techno-economic analysis of suitable use cases," Netnomics, Springer, vol. 20(2), pages 153-175, December.
    12. Pedro Ivo Cruz & Dimitri Leandro & Tito Spadini & Ricardo Suyama & Murilo Bellezoni Loiola, 2024. "Detecting malicious pilot contamination in multiuser massive MIMO using decision trees," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(4), pages 797-809, August.
    13. Fei Wu & Donglin Liu & Youxi Tang, 2018. "Symbol error rate on fading self-interference channel in full-duplex," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(3), pages 477-483, March.
    14. Edward J. Oughton & William Lehr, 2022. "Surveying 5G Techno-Economic Research to Inform the Evaluation of 6G Wireless Technologies," Papers 2201.02272, arXiv.org, revised Jan 2022.
    15. Abhinaba Dey & Prabina Pattanayak, 2022. "Inter-intra cellular pilot contamination mitigation for heterogeneous massive MIMO cellular systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 91-103, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:71:y:2019:i:4:d:10.1007_s11235-018-0529-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.