IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i8p262-d1442407.html
   My bibliography  Save this article

Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach

Author

Listed:
  • Amna Shabbir

    (Department of Electronic Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Muhammad Faizan Shirazi

    (Department of Electronic Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
    Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA)

  • Safdar Rizvi

    (Department of Computer Science, Bahria University, Karachi Campus, Karachi 75000, Pakistan)

  • Sadique Ahmad

    (EIAS Data Science and Block Chain Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Abdelhamied A. Ateya

    (EIAS Data Science and Block Chain Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Electronics and Communications Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

This research endeavors to advance energy efficiency (EE) within heterogeneous networks (HetNets) through a comprehensive approach. Initially, we establish a foundational framework by implementing a two-tier network architecture based on Poisson process distribution from stochastic geometry. Through this deployment, we develop a tailored EE model, meticulously analyzing the implications of random base station and user distributions on energy efficiency. We formulate joint base station and user densities that are optimized for EE while adhering to stringent quality-of-service (QoS) requirements. Subsequently, we introduce a novel dynamically distributed opportunistic sleep strategy (D-DOSS) to optimize EE. This strategy strategically clusters base stations throughout the network and dynamically adjusts their sleep patterns based on real-time traffic load thresholds. Employing Monte Carlo simulations with MATLAB, we rigorously evaluate the efficacy of the D-DOSS approach, quantifying improvements in critical QoS parameters, such as coverage probability, energy utilization efficiency (EUE), success probability, and data throughput. In conclusion, our research represents a significant step toward optimizing EE in HetNets, simultaneously addressing network architecture optimization and proposing an innovative sleep management strategy, offering practical solutions to maximize energy efficiency in future wireless networks.

Suggested Citation

  • Amna Shabbir & Muhammad Faizan Shirazi & Safdar Rizvi & Sadique Ahmad & Abdelhamied A. Ateya, 2024. "Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach," Future Internet, MDPI, vol. 16(8), pages 1-19, July.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:8:p:262-:d:1442407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/8/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/8/262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed H. Alsharif & Rosdiadee Nordin, 2017. "Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 617-637, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oughton, Edward J. & Lehr, William & Katsaros, Konstantinos & Selinis, Ioannis & Bubley, Dean & Kusuma, Julius, 2021. "Revisiting Wireless Internet Connectivity: 5G vs Wi-Fi 6," Telecommunications Policy, Elsevier, vol. 45(5).
    2. Ahmed Murkaz & Riaz Hussain & Junaid Ahmed & Muhammad Adil & Babatunji Omoniwa & Adeel Iqbal, 2018. "An intra–inter-cell device-to-device communication scheme to enhance 5G network throughput with delay modeling," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 69(4), pages 461-475, December.
    3. Mohammed H. Alsharif, 2017. "Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations," Energies, MDPI, vol. 10(3), pages 1-20, March.
    4. Cheng, Xiaoyuan & Hu, Yukun & Varga, Liz, 2022. "5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    5. Shaik Thaherbasha & Ravindra Dhuli, 2022. "Outage performance of NOMA over $$\alpha -\mu ,\;\eta -\mu \; and \;\alpha -\eta -\mu $$ α - μ , η - μ a n d α - η - μ faded channels with imperfect CSI and interference," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(2), pages 279-294, February.
    6. Asmae Mamane & M. Fattah & M. El Ghazi & M. El Bekkali, 2022. "5G enhanced mobile broadband multi-criteria scheduler for dense urban scenario," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 33-43, May.
    7. Ehab Ali & Mahamod Ismail & Rosdiadee Nordin & Nor Fadzilah Abdulah, 2019. "Beamforming with 2D-AOA estimation for pilot contamination reduction in massive MIMO," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 541-552, August.
    8. Faizan Qamar & M. H. D. Nour Hindia & Kaharudin Dimyati & Kamarul Ariffin Noordin & Iraj Sadegh Amiri, 2019. "Interference management issues for the future 5G network: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 627-643, August.
    9. Edward J. Oughton & William Lehr, 2022. "Surveying 5G Techno-Economic Research to Inform the Evaluation of 6G Wireless Technologies," Papers 2201.02272, arXiv.org, revised Jan 2022.
    10. Minjoong Rim & Seungyeob Chae & Chung G. Kang, 2019. "MIMO receivers considering preamble collisions for grant-free random access in machine type communication systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(2), pages 185-191, February.
    11. Rodrigo Calderón-Rico & Roberto Carrasco-Alvarez & Javier Vázquez Castillo, 2018. "Dynamic wavelet-based pilot allocation algorithm for OFDM-based cognitive radio systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(2), pages 193-200, June.
    12. Juan Riol Martín & Raquel Pérez-Leal & Julio Navío-Marco, 2019. "Towards 5G: Techno-economic analysis of suitable use cases," Netnomics, Springer, vol. 20(2), pages 153-175, December.
    13. Fei Wu & Donglin Liu & Youxi Tang, 2018. "Symbol error rate on fading self-interference channel in full-duplex," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(3), pages 477-483, March.
    14. Svetlana Rastvortseva & Elena Kameneva, 2024. "Development of national specialization in 5G technologies within the European Union," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 13(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:8:p:262-:d:1442407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.