IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v70y2019i1d10.1007_s11235-018-0465-x.html
   My bibliography  Save this article

Enabling remote-control for the power sub-stations over LTE-A networks

Author

Listed:
  • MHD Nour Hindia

    (University of Malaya)

  • Faizan Qamar

    (University of Malaya)

  • Mohammad B. Majed

    (Universiti Teknologi Malaysia
    University of Human Development (UHD))

  • Tharek Abd Rahman

    (Universiti Teknologi Malaysia)

  • Iraj S. Amiri

    (Ton Duc Thang University
    Ton Duc Thang University)

Abstract

In recent years, smart grid (SG) applications have been proven a sophisticated technology of immense aptitude, comfort and efficiency not only for the power generation sectors but also for other industrial purposes. The term SG is used to describe a set of systems customized to rapidly and automatically monitor user demand, restore power, isolate faults and maintain stability for more efficient transmission, generation and delivery of electric power. Nevertheless, the quality of service (QoS) guarantee is essential to maintain the networking technology used in different stages and communication of the SG for efficient distribution, which may be drastically obstructed as the sensors of the application increases. Undoubtedly, receiving and transmitting of this information requires two-way, high speed, reliable and secure communication infrastructure. In this paper, we have proposed a scheduling approach guarantees the efficient utilization of existing network resources that satisfy the sensors’ demands sufficiently. The proposed approach is based on hierarchical adaptive weighting method, which helps to overcome the issues of studied scheduling approach and intended to aid SG sensors applications, based on its QoS demands. We have employed four enabler SG applications for remote power control, namely demand response, advanced metering infrastructure, video surveillance and wide area situational awareness applications for the implementation of the remote-power substation controlling. Moreover, the cooperative game theory technique has been incorporated into a solution for the optimal estimation and allocation of bandwidth among different sensors. The results have been evaluated in terms of throughput, fairness index and spectral efficiency and results have been compared with the well-known scheduling approaches such as exponential/proportional fairness (EXP/PF), best channel quality indicator (Best-CQI) and exponential rules (EXP-Rule). The results demonstrated that the proposed approach is providing a better performance in terms fairness index by 25, 66 and 68% compared to EXP/PF, EXP/RULE and Best-CQI, respectively.

Suggested Citation

  • MHD Nour Hindia & Faizan Qamar & Mohammad B. Majed & Tharek Abd Rahman & Iraj S. Amiri, 2019. "Enabling remote-control for the power sub-stations over LTE-A networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(1), pages 37-53, January.
  • Handle: RePEc:spr:telsys:v:70:y:2019:i:1:d:10.1007_s11235-018-0465-x
    DOI: 10.1007/s11235-018-0465-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-018-0465-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-018-0465-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    2. Usman, Ahmad & Shami, Sajjad Haider, 2013. "Evolution of Communication Technologies for Smart Grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 191-199.
    3. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    4. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    5. Mohammad Nour Hindia & Ahmed Wasif Reza & Kamarul Ariffin Noordin & Muhammad Hasibur Rashid Chayon, 2015. "A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faizan Qamar & M. H. D. Nour Hindia & Kaharudin Dimyati & Kamarul Ariffin Noordin & Iraj Sadegh Amiri, 2019. "Interference management issues for the future 5G network: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(4), pages 627-643, August.
    2. MHD Nour Hindia & Faizan Qamar & Talib Abbas & Kaharudin Dimyati & Mohamad Sofian Abu Talip & Iraj Sadegh Amiri, 2019. "Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihai Horia Zaharia, 2017. "A Multiagent Approach to Database Migration for Big Data Systems," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 159-180, July.
    2. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    3. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    4. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    5. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    7. Shigeru Kimura & Yanfei Li, 2016. "Study on Power Grid Interconnection and Electricity Trading in Northeast Asia," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2015-rpr-09 edited by Shigeru Kimura & Yanfei Li, October.
    8. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    9. Abo-Elyousr, Farag K. & Elnozahy, Ahmed, 2018. "Bi-objective economic feasibility of hybrid micro-grid systems with multiple fuel options for islanded areas in Egypt," Renewable Energy, Elsevier, vol. 128(PA), pages 37-56.
    10. Yasser Fathi Nassar & Mansour Awiedat Salem & Kaiss Rateb Iessa & Ibraheem Mohamed AlShareef & Khaled Amer Ali & Massoud Ali Fakher, 2021. "Estimation of CO2 emission factor for the energy industry sector in libya: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13998-14026, September.
    11. Vo, D.H. & Nguyen, H.M. & Vo, A.T. & McAleer, M.J., 2019. "CO2 Emissions, Energy Consumption and Economic Growth," Econometric Institute Research Papers EI2019-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    13. Didem Dizdaroglu, 2017. "The Role of Indicator-Based Sustainability Assessment in Policy and the Decision-Making Process: A Review and Outlook," Sustainability, MDPI, vol. 9(6), pages 1-28, June.
    14. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    15. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    16. Jaime de Melo & Jean-Marc Solleder, 2019. "The role of an Environmental Goods Agreement in the quest to improve the regime complex for climate change," Working Papers hal-02394536, HAL.
    17. Grenestam, Erik & Nordin, Martin, 2018. "Estimating the impact of agri-environmental payments on nutrient runoff using a unique combination of data," Land Use Policy, Elsevier, vol. 75(C), pages 388-398.
    18. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    19. Richard Green & Yacob Mulugetta & Zhong Xiang Zhang, 2014. "Sustainable energy policy," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 33, pages 532-550, Edward Elgar Publishing.
    20. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:70:y:2019:i:1:d:10.1007_s11235-018-0465-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.