IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2799-d672139.html
   My bibliography  Save this article

Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting

Author

Listed:
  • Altyeb Taha

    (Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

The continuous development of network technologies plays a major role in increasing the utilization of these technologies in many aspects of our lives, including e-commerce, electronic banking, social media, e-health, and e-learning. In recent times, phishing websites have emerged as a major cybersecurity threat. Phishing websites are fake web pages that are created by hackers to mimic the web pages of real websites to deceive people and steal their private information, such as account usernames and passwords. Accurate detection of phishing websites is a challenging problem because it depends on several dynamic factors. Ensemble methods are considered the state-of-the-art solution for many classification tasks. Ensemble learning combines the predictions of several separate classifiers to obtain a higher performance than a single classifier. This paper proposes an intelligent ensemble learning approach for phishing website detection based on weighted soft voting to enhance the detection of phishing websites. First, a base classifier consisting of four heterogeneous machine-learning algorithms was utilized to classify the websites as phishing or legitimate websites. Second, a novel weighted soft voting method based on Kappa statistics was employed to assign greater weights of influence to stronger base learners and lower weights of influence to weaker base learners, and then integrate the results of each classifier based on the soft weighted voting to differentiate between phishing websites and legitimate websites. The experiments were conducted using the publicly available phishing website dataset from the UCI Machine Learning Repository, which consists of 4898 phishing websites and 6157 legitimate websites. The experimental results showed that the suggested intelligent approach for phishing website detection outperformed the base classifiers and soft voting method and achieved the highest accuracy of 95% and an Area Under the Curve (AUC) of 98.8%.

Suggested Citation

  • Altyeb Taha, 2021. "Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting," Mathematics, MDPI, vol. 9(21), pages 1-13, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2799-:d:672139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. B. Gupta & Nalin A. G. Arachchilage & Kostas E. Psannis, 2018. "Defending against phishing attacks: taxonomy of methods, current issues and future directions," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(2), pages 247-267, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wee How Khoh & Ying Han Pang & Shih Yin Ooi & Lillian-Yee-Kiaw Wang & Quan Wei Poh, 2023. "Predictive Churn Modeling for Sustainable Business in the Telecommunication Industry: Optimized Weighted Ensemble Machine Learning," Sustainability, MDPI, vol. 15(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joakim Kävrestad & Allex Hagberg & Marcus Nohlberg & Jana Rambusch & Robert Roos & Steven Furnell, 2022. "Evaluation of Contextual and Game-Based Training for Phishing Detection," Future Internet, MDPI, vol. 14(4), pages 1-16, March.
    2. Robert Karamagi, 2022. "A Review of Factors Affecting the Effectiveness of Phishing," Computer and Information Science, Canadian Center of Science and Education, vol. 15(1), pages 1-20, February.
    3. Abdul Basit & Maham Zafar & Xuan Liu & Abdul Rehman Javed & Zunera Jalil & Kashif Kifayat, 2021. "A comprehensive survey of AI-enabled phishing attacks detection techniques," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 139-154, January.
    4. Jaime A. Teixeira da Silva & Aceil Al-Khatib & Panagiotis Tsigaris, 2020. "Spam emails in academia: issues and costs," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1171-1188, February.
    5. Aurélien Baillon & Jeroen de Bruin & Aysil Emirmahmutoglu & Evelien van de Veer & Bram van Dijk, 2019. "Informing, simulating experience, or both : A field experiment on phishing risks," Post-Print hal-04325609, HAL.
    6. Dipankar Dasgupta & Zahid Akhtar & Sajib Sen, 2022. "Machine learning in cybersecurity: a comprehensive survey," The Journal of Defense Modeling and Simulation, , vol. 19(1), pages 57-106, January.
    7. Aurélien Baillon & Jeroen de Bruin & Aysil Emirmahmutoglu & Evelien van de Veer & Bram van Dijk, 2019. "Informing, simulating experience, or both: A field experiment on phishing risks," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2799-:d:672139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.