IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v66y2017i3d10.1007_s11235-017-0300-9.html
   My bibliography  Save this article

Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment

Author

Listed:
  • Ha Hoang Kha

    (Ho Chi Minh City University of Technology, VNU-HCM)

  • Tung Thanh Vu

    (Ho Chi Minh City University of Technology, VNU-HCM)

  • Tuan Do-Hong

    (Ho Chi Minh City University of Technology, VNU-HCM)

Abstract

This paper studies the transceiver design for multiuser multiple-input multiple-output cognitive radio networks. Different from the conventional methods which aim at maximizing the spectral efficiency, this paper focuses on maximizing the energy efficiency (EE) of the network. First, we formulate the precoding and decoding matrix designs as optimization problems which maximize the EE of the network subject to per-user power and interference constraints. With a higher priority in accessing the spectrum, the primary users (PUs) can design their transmission strategies without awareness of the secondary user (SU) performance. Thus, we apply a full interference alignment technique to eliminate interference between the PUs. Then, the EE maximization problem for the primary network can be reformulated as a tractable concave-convex fractional program which can be solved by the Dinkelbach method. On the other hand, the uncoordinated interference from the PUs to the SUs cannot be completely eliminated due to a limited coordination between the PUs with the SUs. The secondary transceivers are designed to optimize the EE while enforcing zero-interference to the PUs. Since the EE maximization for the secondary network is an intractable fractional programming problem, we develop an iterative algorithm with provable convergence by invoking the difference of convex functions programming along with the Dinkelbach method. In addition, we also derive closed-form expressions for the solutions in each iteration to gain insights into the structures of the optimal transceivers. The simulation results demonstrate that our proposed method outperforms the conventional approaches in terms of the EE.

Suggested Citation

  • Ha Hoang Kha & Tung Thanh Vu & Tuan Do-Hong, 2017. "Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(3), pages 469-480, November.
  • Handle: RePEc:spr:telsys:v:66:y:2017:i:3:d:10.1007_s11235-017-0300-9
    DOI: 10.1007/s11235-017-0300-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-017-0300-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-017-0300-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan-Xinh Nguyen & Ha Hoang Kha & Pham Quang Thai & Hung Quang Ta, 2021. "Multi-objective optimization for information-energy transfer trade-offs in full-duplex multi-user MIMO cognitive networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 85-96, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    2. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    3. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    4. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    5. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    6. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    7. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    8. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    9. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    10. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    11. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    13. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    14. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    15. Meena K. Bector & I. Husain & S. Chandra & C. R. Bector, 1988. "A duality model for a generalized minmax program," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 493-501, October.
    16. Vaithilingam Jeyakumar & Gue Myung Lee & Jae Hyoung Lee & Yingkun Huang, 2024. "Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 308-343, January.
    17. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    18. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    19. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    20. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:66:y:2017:i:3:d:10.1007_s11235-017-0300-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.