IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v61y2016i4d10.1007_s11235-015-0039-0.html
   My bibliography  Save this article

An analysis of nonstationary coupled queues

Author

Listed:
  • Jamol Pender

    (Cornell University)

Abstract

We consider a two dimensional time varying tandem queue with coupled processors. We assume that jobs arrive to the first station as a non-homogeneous Poisson process. When each queue is non-empty, jobs are processed separately like an ordinary tandem queue. However, if one of the processors is empty, then the total service capacity is given to the other processor. This problem has been analyzed in the constant rate case by leveraging Riemann Hilbert theory and two dimensional generating functions. Since we are considering time varying arrival rates, generating functions cannot be used as easily. Thus, we choose to exploit the functional Kolmogorov forward equations (FKFE) for the two dimensional queueing process. In order to leverage the FKFE, it is necessary to approximate the queueing distribution in order to compute the relevant expectations and covariance terms. To this end, we expand our two dimensional Markovian queueing process in terms of a two dimensional polynomial chaos expansion using the Hermite polynomials as basis elements. Truncating the polynomial chaos expansion at a finite order induces an approximate distribution that is close to the original stochastic process. Using this truncated expansion as a surrogate distribution, we can accurately estimate probabilistic quantities of the two dimensional queueing process such as the mean, variance, and probability that each queue is empty.

Suggested Citation

  • Jamol Pender, 2016. "An analysis of nonstationary coupled queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 61(4), pages 823-838, April.
  • Handle: RePEc:spr:telsys:v:61:y:2016:i:4:d:10.1007_s11235-015-0039-0
    DOI: 10.1007/s11235-015-0039-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-015-0039-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-015-0039-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    2. Gregory Dobson & Tolga Tezcan & Vera Tilson, 2013. "Optimal Workflow Decisions for Investigators in Systems with Interruptions," Management Science, INFORMS, vol. 59(5), pages 1125-1141, May.
    3. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan, 2019. "Optimal pricing for tandem queues with finite buffers," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 323-396, August.
    4. Legros, Benjamin & Jouini, Oualid & Akşin, O. Zeynep & Koole, Ger, 2020. "Front-office multitasking between service encounters and back-office tasks," European Journal of Operational Research, Elsevier, vol. 287(3), pages 946-963.
    5. Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
    6. Dimitrios G. Pandelis, 2014. "Optimal control of noncollaborative servers in two‐stage tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 435-446, September.
    7. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    8. Aili (Alice) Zou & Douglas G. Down, 2018. "Asymptotically Maximal Throughput in Tandem Systems with Flexible and Dedicated Servers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.
    9. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
    10. Ramesh Arumugam & Maria Mayorga & Kevin Taaffe, 2009. "Inventory based allocation policies for flexible servers in serial systems," Annals of Operations Research, Springer, vol. 172(1), pages 1-23, November.
    11. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    12. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    13. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    14. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    15. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    16. Hayriye Ayhan, 2022. "Server assignment policies in queues with customer abandonments," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 393-395, April.
    17. Wallace J. Hopp & Seyed M.R. Iravani & Biying Shou & Robert Lien, 2009. "Design and control of agile automated CONWIP production lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 42-56, February.
    18. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2022. "Dynamic Control of Non‐Collaborative Workers When Reassignment Is Costly," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1332-1352, March.
    19. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
    20. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2016. "Optimal control of queueing systems with non-collaborating servers," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 79-110, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:61:y:2016:i:4:d:10.1007_s11235-015-0039-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.