IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i2d10.1007_s00362-025-01667-0.html
   My bibliography  Save this article

A penalization method to estimate the intrinsic dimensionality of data

Author

Listed:
  • Liliana Forzani

    (Universidad Nacional del Litoral)

  • Daniela Rodriguez

    (Universidad Torcuato Di Tella)

  • Mariela Sued

    (Universidad San Andrés)

Abstract

We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle non-normal data, providing a flexible alternative to traditional factor models. Our procedure identifies the dimension at which the eigenvalues of a scatter matrix stabilize. We establish the consistency of the procedure under mild conditions and demonstrate its robustness across a range of data distributions. A comparative analysis highlights its advantages over existing techniques, making it a valuable tool for dimensionality estimation without relying on distributional assumptions.

Suggested Citation

  • Liliana Forzani & Daniela Rodriguez & Mariela Sued, 2025. "A penalization method to estimate the intrinsic dimensionality of data," Statistical Papers, Springer, vol. 66(2), pages 1-20, February.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:2:d:10.1007_s00362-025-01667-0
    DOI: 10.1007/s00362-025-01667-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01667-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01667-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ard H. J. den Reijer & Jan P. A. M. Jacobs & Pieter W. Otter, 2021. "A criterion for the number of factors," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(18), pages 4293-4299, August.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    4. Forzani, Liliana & Rodriguez, Daniela & Smucler, Ezequiel & Sued, Mariela, 2019. "Sufficient dimension reduction and prediction in regression: Asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 339-349.
    5. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    6. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    7. Josse, Julie & Husson, François, 2012. "Selecting the number of components in principal component analysis using cross-validation approximations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1869-1879.
    8. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    9. Charles Bouveyron & Pierre Latouche & Pierre‐Alexandre Mattei, 2020. "Exact dimensionality selection for Bayesian PCA," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 196-211, March.
    10. Liliana Forzani & Daniela Rodriguez & Mariela Sued, 2024. "Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 987-1013, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    4. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Bada, Oualid & Kneip, Alois, 2014. "Parameter cascading for panel models with unknown number of unobserved factors: An application to the credit spread puzzle," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 95-115.
    7. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    8. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    9. repec:cte:wsrepe:23974 is not listed on IDEAS
    10. Matthew Harding & Carlos Lamarche & Chris Muris, 2022. "Estimation of a Factor-Augmented Linear Model with Applications Using Student Achievement Data," Papers 2203.03051, arXiv.org.
    11. Timothy B. Armstrong & Martin Weidner & Andrei Zeleneev, 2024. "Robust estimation and inference in panels with interactive fixed effects," CeMMAP working papers 28/24, Institute for Fiscal Studies.
    12. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    13. Chan, Tak-Shing T. & Gibberd, Alex, 2025. "Feasible model-based principal component analysis: Joint estimation of rank and error covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 201(C).
    14. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    15. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    18. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    19. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    20. Chen, Liang, 2012. "Identifying observed factors in approximate factor models: estimation and hypothesis testing," MPRA Paper 37514, University Library of Munich, Germany.
    21. Venetis, Ioannis & Ladas, Avgoustinos, 2022. "Co-movement and global factors in sovereign bond yields," MPRA Paper 115801, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:2:d:10.1007_s00362-025-01667-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.