IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i8d10.1007_s00362-024-01591-9.html
   My bibliography  Save this article

Multiple testing of interval composite null hypotheses using randomized p-values

Author

Listed:
  • Daniel Ochieng

    (University of Bremen)

Abstract

Equivalence tests are statistical hypothesis testing procedures that aim to establish practical equivalence rather than the usual statistical significant difference. These testing procedures are frequent in “bioequivalence studies," where one would wish to show that, for example, an existing drug and a new one under development have comparable therapeutic effects. In this article, we propose a two-stage randomized (RAND2) p-value that depends on a uniformly most powerful (UMP) p-value and an arbitrary tuning parameter $$c\in [0,1]$$ c ∈ [ 0 , 1 ] for testing an interval composite null hypothesis. We investigate the behavior of the distribution function of the two p-values under the null hypothesis and alternative hypothesis for a fixed significance level $$t\in (0,1)$$ t ∈ ( 0 , 1 ) and varying sample sizes. We evaluate the performance of the two p-values in estimating the proportion of true null hypotheses in multiple testing. We conduct a family-wise error rate control using an adaptive Bonferroni procedure with a plug-in estimator to account for the multiplicity that arises from our multiple hypotheses under consideration. The various claims in this research are verified using a simulation study and real-world data analysis.

Suggested Citation

  • Daniel Ochieng, 2024. "Multiple testing of interval composite null hypotheses using randomized p-values," Statistical Papers, Springer, vol. 65(8), pages 5055-5076, October.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01591-9
    DOI: 10.1007/s00362-024-01591-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01591-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01591-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickhaus Thorsten & Straßburger Klaus & Schunk Daniel & Morcillo-Suarez Carlos & Illig Thomas & Navarro Arcadi, 2012. "How to analyze many contingency tables simultaneously in genetic association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-33, July.
    2. Huang Yifan & Hsu Jason C & Peruggia Mario & Scott Abigail A, 2006. "Statistical Selection of Maintenance Genes for Normalization of Gene Expressions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-18, February.
    3. Joshua Habiger & Edsel Peña, 2011. "Randomised -values and nonparametric procedures in multiple testing," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 583-604.
    4. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    5. Anh-Tuan Hoang & Thorsten Dickhaus, 2022. "On the usage of randomized p-values in the Schweder–Spjøtvoll estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 289-319, April.
    6. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Tuan Hoang & Thorsten Dickhaus, 2022. "On the usage of randomized p-values in the Schweder–Spjøtvoll estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 289-319, April.
    2. Zhao, Haibing, 2014. "Adaptive FWER control procedure for grouped hypotheses," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 63-70.
    3. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    4. Marina Bogomolov & Ruth Heller, 2018. "Assessing replicability of findings across two studies of multiple features," Biometrika, Biometrika Trust, vol. 105(3), pages 505-516.
    5. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    6. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    7. Bryan D. MacGregor & Rainer Schulz & Yuan Zhao, 2021. "Performance and Market Maturity in Mutual Funds: Is Real Estate Different?," The Journal of Real Estate Finance and Economics, Springer, vol. 63(3), pages 437-492, October.
    8. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    9. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    10. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    11. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    12. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    13. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    14. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
    15. Nucera, Federico & Valente, Giorgio, 2013. "Carry trades and the performance of currency hedge funds," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
    16. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Iain Melvin & Jason Weston & William Stafford Noble & Christina Leslie, 2011. "Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-8, January.
    18. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    19. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    20. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01591-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.