IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01558-w.html
   My bibliography  Save this article

Multivariate stochastic comparisons of sequential order statistics with non-identical components

Author

Listed:
  • Tanmay Sahoo

    (Indian Institute of Technology Jodhpur)

  • Nil Kamal Hazra

    (Indian Institute of Technology Jodhpur)

  • Narayanaswamy Balakrishnan

    (McMaster University)

Abstract

Sequential order statistics (SOS) are useful tools for modeling the lifetimes of systems wherein the failure of a component has a significant impact on the lifetimes of the remaining surviving components. The SOS model is a general model that contains most of the existing models for ordered random variables. In this paper, we consider the SOS model with non-identical components and then discuss various univariate and multivariate stochastic comparison results in both one-and two-sample scenarios.

Suggested Citation

  • Tanmay Sahoo & Nil Kamal Hazra & Narayanaswamy Balakrishnan, 2024. "Multivariate stochastic comparisons of sequential order statistics with non-identical components," Statistical Papers, Springer, vol. 65(7), pages 4365-4404, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01558-w
    DOI: 10.1007/s00362-024-01558-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01558-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01558-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Hongmei & Hu, Taizhong, 2010. "Some new results on multivariate dispersive ordering of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 964-970, April.
    2. M. Kelkinnama & M. Asadi, 2019. "Stochastic and ageing properties of coherent systems with dependent identically distributed components," Statistical Papers, Springer, vol. 60(3), pages 805-821, June.
    3. Erhard Cramer & Udo Kamps, 2003. "Marginal distributions of sequential and generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 293-310, December.
    4. Félix Belzunce & Carolina Martínez-Riquelme, 2015. "Some results for the comparison of generalized order statistics in the total time on test and excess wealth orders," Statistical Papers, Springer, vol. 56(4), pages 1175-1190, November.
    5. Erhard Cramer & Udo Kamps, 1996. "Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 535-549, September.
    6. Paul H. Kvam & Edsel A. Pena, 2005. "Estimating Load-Sharing Properties in a Dynamic Reliability System," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 262-272, March.
    7. Ibrahim Ahmad & Mohamed Kayid, 2007. "Reversed preservation of stochastic orders for random minima and maxima with applications," Statistical Papers, Springer, vol. 48(2), pages 283-293, April.
    8. Nuria Torrado & Rosa E. Lillo & Michael P. Wiper, 2012. "Sequential Order Statistics: Ageing and Stochastic Orderings," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 579-596, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuong, Q.N. & Bedbur, S. & Kamps, U., 2013. "Distances between models of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 24-36.
    2. Maryam Esna-Ashari & Narayanaswamy Balakrishnan & Mahdi Alimohammadi, 2023. "HR and RHR orderings of generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 131-148, January.
    3. Bedbur, Stefan & Johnen, Marcus & Kamps, Udo, 2019. "Inference from multiple samples of Weibull sequential order statistics," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 381-399.
    4. Stefan Bedbur & Udo Kamps, 2019. "Testing for Equality of Parameters from Different Load-Sharing Systems," Stats, MDPI, vol. 2(1), pages 1-19, January.
    5. Burkschat, Marco & Torrado, Nuria, 2014. "On the reversed hazard rate of sequential order statistics," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 106-113.
    6. Eric Beutner, 2008. "Nonparametric inference for sequential k-out-of-n systems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 605-626, September.
    7. Georgios Psarrakos & Antonio Di Crescenzo, 2018. "A residual inaccuracy measure based on the relevation transform," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 37-59, January.
    8. Burkschat, M. & Kamps, U. & Kateri, M., 2010. "Sequential order statistics with an order statistics prior," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1826-1836, September.
    9. N. Balakrishnan & U. Kamps & M. Kateri, 2012. "A sequential order statistics approach to step-stress testing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 303-318, April.
    10. Kumar Mahesh & Ramyamol P. C., 2019. "Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 87-94, December.
    11. Maryam Esna-Ashari & Mahdi Alimohammadi & Elnaz Garousi & Antonio Di Crescenzo, 2024. "Some New Results on Stochastic Comparisons of Spacings of Generalized Order Statistics from One and Two Samples," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    12. M. Burkschat & J. Navarro, 2014. "Asymptotic behavior of the hazard rate in systems based on sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 965-994, November.
    13. Burkschat Marco & Kamps Udo & Kateri Maria, 2013. "Estimating scale parameters under an order statistics prior," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 205-219, August.
    14. Mariusz Bieniek & Agnieszka Goroncy, 2020. "Sharp lower bounds on expectations of gOS based on DGFR distributions," Statistical Papers, Springer, vol. 61(3), pages 1027-1042, June.
    15. Balakrishnan, N. & Beutner, E. & Kamps, U., 2008. "Order restricted inference for sequential k-out-of-n systems," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1489-1502, August.
    16. Félix Belzunce & Carolina Martínez-Riquelme, 2015. "Some results for the comparison of generalized order statistics in the total time on test and excess wealth orders," Statistical Papers, Springer, vol. 56(4), pages 1175-1190, November.
    17. Tzong-Ru Tsai & Hua Xin & Chiun-How Kao, 2021. "Bayesian Estimation Based on Sequential Order Statistics for Heterogeneous Baseline Gompertz Distributions," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    18. Félix Belzunce & Carolina Martínez-Riquelme & José A. Mercader & José M. Ruiz, 2021. "Comparisons of policies based on relevation and replacement by a new one unit in reliability," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 211-227, March.
    19. Tzong-Ru Tsai & Yuhlong Lio & Hua Xin & Hoang Pham, 2021. "Parameter Estimation for Composite Dynamical Systems Based on Sequential Order Statistics from Burr Type XII Mixture Distribution," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    20. Marcus Johnen & Stefan Bedbur & Udo Kamps, 2020. "A note on multiple roots of a likelihood equation for Weibull sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 519-525, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01558-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.