IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i2p145-d478209.html
   My bibliography  Save this article

Bayesian Estimation Based on Sequential Order Statistics for Heterogeneous Baseline Gompertz Distributions

Author

Listed:
  • Tzong-Ru Tsai

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

  • Hua Xin

    (School of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China)

  • Chiun-How Kao

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

Abstract

A composite dynamic system (CDS) is composed of multiple components. Each component failure can equally induce higher loading on the surviving components and, hence, enhances the hazard rate of each surviving component. The applications of CDS and the reliability evaluation of CDS has earned more attention in the recent two decades. Because the lifetime quality of components could be inconsistent, the lifetimes of components in the CDS is considered to follow heterogeneous baseline Gompertz distributions in this study. A power-trend hazard rate function is used in order to characterize the hazard rate of the CDS. In order to overcome the difficulty of obtaining reliable estimates of the parameters in the CDS model, the Bayesian estimation method utilizing a hybrid Gibbs sampling and Metropolis-Hasting algorithm to implement the Markov chain Monte Carlo approach is proposed for obtaining the Bayes estimators of the CDS parameters. An intensive simulation study is carried out to evaluate the performance of the proposed estimation method. The simulation results show that the proposed estimation method is reliable in providing reliability evaluation information for the CDS. An example regarding the service system of small electric carts is used for illustration.

Suggested Citation

  • Tzong-Ru Tsai & Hua Xin & Chiun-How Kao, 2021. "Bayesian Estimation Based on Sequential Order Statistics for Heterogeneous Baseline Gompertz Distributions," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:145-:d:478209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/2/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/2/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    2. Erhard Cramer & Udo Kamps, 2003. "Marginal distributions of sequential and generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 293-310, December.
    3. Burkschat, Marco & Torrado, Nuria, 2014. "On the reversed hazard rate of sequential order statistics," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 106-113.
    4. Mohan L. Garg & B. Raja Rao & Carol K. Redmond, 1970. "Maximum‐Likelihood Estimation of the Parameters of the Gompertz Survival Function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 19(2), pages 152-159, June.
    5. Balakrishnan, N. & Beutner, E. & Kamps, U., 2008. "Order restricted inference for sequential k-out-of-n systems," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1489-1502, August.
    6. Jorge Navarro & Marco Burkschat, 2011. "Coherent systems based on sequential order statistics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 123-135, March.
    7. N. Balakrishnan & U. Kamps & M. Kateri, 2012. "A sequential order statistics approach to step-stress testing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 303-318, April.
    8. Majid Hashempour & Mahdi Doostparast, 2017. "Bayesian inference on multiply sequential order statistics from heterogeneous exponential populations with GLR test for homogeneity," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(16), pages 8086-8100, August.
    9. Erhard Cramer & Udo Kamps, 2001. "Estimation with Sequential Order Statistics from Exponential Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 307-324, June.
    10. Erhard Cramer & Udo Kamps, 1996. "Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 535-549, September.
    11. Chanseok Park, 2013. "Parameter estimation from load-sharing system data using the expectation–maximization algorithm," IISE Transactions, Taylor & Francis Journals, vol. 45(2), pages 147-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzong-Ru Tsai & Yuhlong Lio & Hua Xin & Hoang Pham, 2021. "Parameter Estimation for Composite Dynamical Systems Based on Sequential Order Statistics from Burr Type XII Mixture Distribution," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    2. Stefan Bedbur & Udo Kamps, 2019. "Testing for Equality of Parameters from Different Load-Sharing Systems," Stats, MDPI, vol. 2(1), pages 1-19, January.
    3. Bedbur, Stefan & Johnen, Marcus & Kamps, Udo, 2019. "Inference from multiple samples of Weibull sequential order statistics," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 381-399.
    4. Burkschat Marco & Kamps Udo & Kateri Maria, 2013. "Estimating scale parameters under an order statistics prior," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 205-219, August.
    5. Vuong, Q.N. & Bedbur, S. & Kamps, U., 2013. "Distances between models of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 24-36.
    6. Burkschat, M. & Kamps, U. & Kateri, M., 2010. "Sequential order statistics with an order statistics prior," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1826-1836, September.
    7. N. Balakrishnan & U. Kamps & M. Kateri, 2012. "A sequential order statistics approach to step-stress testing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 303-318, April.
    8. Alexander Katzur & Udo Kamps, 2020. "Classification using sequential order statistics," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 201-230, March.
    9. Balakrishnan, N. & Beutner, E. & Kamps, U., 2008. "Order restricted inference for sequential k-out-of-n systems," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1489-1502, August.
    10. Maryam Esna-Ashari & Narayanaswamy Balakrishnan & Mahdi Alimohammadi, 2023. "HR and RHR orderings of generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 131-148, January.
    11. Burkschat, Marco & Torrado, Nuria, 2014. "On the reversed hazard rate of sequential order statistics," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 106-113.
    12. Eric Beutner, 2008. "Nonparametric inference for sequential k-out-of-n systems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 605-626, September.
    13. Kumar Mahesh & Ramyamol P. C., 2019. "Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 87-94, December.
    14. Erhard Cramer & Jorge Navarro, 2015. "Progressive Type‐II censoring and coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 512-530, September.
    15. Marco Burkschat & Tomasz Rychlik, 2018. "Sharp inequalities for quantiles of system lifetime distributions from failure-dependent proportional hazard model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 618-638, September.
    16. Maryam Esna-Ashari & Mahdi Alimohammadi & Elnaz Garousi & Antonio Di Crescenzo, 2024. "Some New Results on Stochastic Comparisons of Spacings of Generalized Order Statistics from One and Two Samples," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    17. S. Gurler, 2012. "On residual lifetimes in sequential (n − k + 1)-out-of-n systems," Statistical Papers, Springer, vol. 53(1), pages 23-31, February.
    18. Vladimir Rykov & Nika Ivanova & Dmitry Kozyrev & Tatyana Milovanova, 2022. "On Reliability Function of a k -out-of- n System with Decreasing Residual Lifetime of Surviving Components after Their Failures," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    19. Udo Kamps & Erhard Cramer, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 271-275, August.
    20. Marcus Johnen & Stefan Bedbur & Udo Kamps, 2020. "A note on multiple roots of a likelihood equation for Weibull sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 519-525, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:145-:d:478209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.