Some New Results on Stochastic Comparisons of Spacings of Generalized Order Statistics from One and Two Samples
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mahdi Tavangar & Majid Asadi, 2012. "Some unified characterization results on the generalized Pareto distributions based on generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 997-1007, October.
- Erhard Cramer & Udo Kamps, 2003. "Marginal distributions of sequential and generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 293-310, December.
- Erhard Cramer & Udo Kamps & Tomasz Rychlik, 2004. "Unimodality of uniform generalized order statistics, with applications to mean bounds," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 183-192, March.
- Erhard Cramer & Udo Kamps, 1996. "Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 535-549, September.
- An, Mark Yuying, 1998.
"Logconcavity versus Logconvexity: A Complete Characterization,"
Journal of Economic Theory, Elsevier, vol. 80(2), pages 350-369, June.
- An, Mark Yuying, 1995. "Logconcavity versus Logconvexity: A Complete Characterization," Working Papers 95-03, Duke University, Department of Economics.
- Hu, Taizhong & Wei, Ying, 2001. "Stochastic comparisons of spacings from restricted families of distributions," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 91-99, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahdi Alimohammadi & Mohammad Hossein Alamatsaz & Erhard Cramer, 2016. "Convolutions and generalization of logconcavity: Implications and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 109-123, March.
- Vuong, Q.N. & Bedbur, S. & Kamps, U., 2013. "Distances between models of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 24-36.
- Maryam Esna-Ashari & Narayanaswamy Balakrishnan & Mahdi Alimohammadi, 2023. "HR and RHR orderings of generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 131-148, January.
- Alimohammadi, Mahdi & Alamatsaz, Mohammad Hossein, 2011. "Some new results on unimodality of generalized order statistics and their spacings," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1677-1682, November.
- Bedbur, Stefan & Johnen, Marcus & Kamps, Udo, 2019. "Inference from multiple samples of Weibull sequential order statistics," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 381-399.
- Stefan Bedbur & Udo Kamps, 2019. "Testing for Equality of Parameters from Different Load-Sharing Systems," Stats, MDPI, vol. 2(1), pages 1-19, January.
- Mariusz Bieniek & Marco Burkschat & Tomasz Rychlik, 2020. "Comparisons of the Expectations of System and Component Lifetimes in the Failure Dependent Proportional Hazard Model," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 173-189, March.
- Tomasz Rychlik, 2010. "Evaluations of generalized order statistics from bounded populations," Statistical Papers, Springer, vol. 51(1), pages 165-177, January.
- Burkschat Marco & Kamps Udo & Kateri Maria, 2013. "Estimating scale parameters under an order statistics prior," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 205-219, August.
- Mariusz Bieniek & Agnieszka Goroncy, 2020. "Sharp lower bounds on expectations of gOS based on DGFR distributions," Statistical Papers, Springer, vol. 61(3), pages 1027-1042, June.
- Burkschat, M. & Kamps, U. & Kateri, M., 2010. "Sequential order statistics with an order statistics prior," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1826-1836, September.
- Balakrishnan, N. & Beutner, E. & Kamps, U., 2008. "Order restricted inference for sequential k-out-of-n systems," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1489-1502, August.
- Tzong-Ru Tsai & Hua Xin & Chiun-How Kao, 2021. "Bayesian Estimation Based on Sequential Order Statistics for Heterogeneous Baseline Gompertz Distributions," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
- Burkschat, Marco & Torrado, Nuria, 2014. "On the reversed hazard rate of sequential order statistics," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 106-113.
- N. Balakrishnan & U. Kamps & M. Kateri, 2012. "A sequential order statistics approach to step-stress testing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 303-318, April.
- Eric Beutner, 2008. "Nonparametric inference for sequential k-out-of-n systems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 605-626, September.
- Tzong-Ru Tsai & Yuhlong Lio & Hua Xin & Hoang Pham, 2021. "Parameter Estimation for Composite Dynamical Systems Based on Sequential Order Statistics from Burr Type XII Mixture Distribution," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
- Kumar Mahesh & Ramyamol P. C., 2019. "Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 87-94, December.
- Udo Kamps & Erhard Cramer, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 271-275, August.
- Ibragimov, Rustam, 2008. "A Tale of Two Tails: Peakedness Properties in Inheritance Models of Evolutionary Theory," Scholarly Articles 2624003, Harvard University Department of Economics.
More about this item
Keywords
stochastic orders; logconvexity/logconcavity; total positivity; basic composition theorem; generalized order statistics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1489-:d:1392113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.