Epidemic changepoint detection in the presence of nuisance changes
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-022-01307-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jeng, X. Jessie & Cai, T. Tony & Li, Hongzhe, 2010. "Optimal Sparse Segment Identification With Application in Copy Number Variation Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1156-1166.
- Lijing Ma & Andrew J. Grant & Georgy Sofronov, 2020. "Multiple change point detection and validation in autoregressive time series data," Statistical Papers, Springer, vol. 61(4), pages 1507-1528, August.
- Nancy R. Zhang & David O. Siegmund & Hanlee Ji & Jun Z. Li, 2010. "Detecting simultaneous changepoints in multiple sequences," Biometrika, Biometrika Trust, vol. 97(3), pages 631-645.
- Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
- Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
- Ning Hao & Yue Selena Niu & Feifei Xiao & Heping Zhang, 2021. "A Super Scalable Algorithm for Short Segment Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 18-33, April.
- Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Bertille Follain & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional changepoint estimation with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 1023-1055, July.
- Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
- Casini, Alessandro & Perron, Pierre, 2024.
"Change-point analysis of time series with evolutionary spectra,"
Journal of Econometrics, Elsevier, vol. 242(2).
- Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Aug 2024.
- Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
- Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
- Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
- Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.
- Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
- Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
- Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
- Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
- Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
- Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.
- Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
More about this item
Keywords
Changepoint detection; Piecewise stationary time series; Segmentation; Stochastic gradient methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:1:d:10.1007_s00362-022-01307-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.