IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i3d10.1007_s00362-019-01140-9.html
   My bibliography  Save this article

Excess and saturated D-optimal designs for the rational model

Author

Listed:
  • Yu. D. Grigoriev

    (St. Petersburg State Electrotechnical University)

  • V. B. Melas

    (St. Petersburg State University)

  • P. V. Shpilev

    (St. Petersburg State University)

Abstract

For a rational two-dimensional nonlinear in parameters model used in analytical chemistry, we investigate how homothetic transformations of the design space affect the number of support points in the optimal designs. We show that there exist two types of optimal designs: a saturated design (i.e. a design with the number of support points which is equal to the number of parameters) and an excess design (i.e. a design with the number of support points which is greater than the number of parameters). The optimal saturated designs are constructed explicitly. Numerical methods for constructing optimal excess designs are used.

Suggested Citation

  • Yu. D. Grigoriev & V. B. Melas & P. V. Shpilev, 2021. "Excess and saturated D-optimal designs for the rational model," Statistical Papers, Springer, vol. 62(3), pages 1387-1405, June.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01140-9
    DOI: 10.1007/s00362-019-01140-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01140-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01140-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu. D. Grigoriev & V. B. Melas & P. V. Shpilev, 2018. "Excess of locally D-optimal designs for Cobb–Douglas model," Statistical Papers, Springer, vol. 59(4), pages 1425-1439, December.
    2. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    2. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    3. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    5. Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
    7. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    9. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    10. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    13. Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
    14. I. Ortiz & I. Martínez & C. Rodríguez & Y. Águila, 2009. "Optimal designs for generalized linear models with biased response," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 225-237, September.
    15. Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.
    16. Dette, Holger & Pepelyshev, Andrey, 2005. "Efficient experimental designs for sigmoidal growth models," Technical Reports 2005,13, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    18. Mandal, Nripes Kumar & Pal, Manisha, 2013. "Maximin designs for the detection of synergistic effects," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1632-1637.
    19. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.
    20. Fritjof Freise & Ulrike Graßhoff & Frank Röttger & Rainer Schwabe, 2021. "D-optimal designs for Poisson regression with synergetic interaction effect," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1004-1025, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01140-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.