IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i6d10.1007_s00362-017-0910-z.html
   My bibliography  Save this article

The asymptotic properties of the estimators in a semiparametric regression model

Author

Listed:
  • Xuejun Wang

    (Anhui University)

  • Meimei Ge

    (Chuzhou University)

  • Yi Wu

    (Anhui University)

Abstract

In this paper, we investigate the parametric component and nonparametric component estimators in a semiparametric regression model based on $$\varphi $$ φ -mixing random variables. The rth mean consistency, complete consistency, uniform rth mean consistency and uniform complete consistency are established under some suitable conditions. In addition, a simulation to study the numerical performance of the consistency of the nearest neighbor weight function estimators is provided. The results obtained in the paper improve the conditions in the literature and generalize the existing results of independent random errors to the case of $$\varphi $$ φ -mixing random errors.

Suggested Citation

  • Xuejun Wang & Meimei Ge & Yi Wu, 2019. "The asymptotic properties of the estimators in a semiparametric regression model," Statistical Papers, Springer, vol. 60(6), pages 2087-2108, December.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:6:d:10.1007_s00362-017-0910-z
    DOI: 10.1007/s00362-017-0910-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0910-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0910-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Qi-Man, 1993. "Almost sure invariance principles for mixing sequences of random variables," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 319-334, November.
    2. Soo Sung, 2011. "On the strong convergence for weighted sums of random variables," Statistical Papers, Springer, vol. 52(2), pages 447-454, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuejun Wang & Xin Deng & Fengxi Xia & Shuhe Hu, 2017. "The consistency for the estimators of semiparametric regression model based on weakly dependent errors," Statistical Papers, Springer, vol. 58(2), pages 303-318, June.
    2. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    3. Christophe Cuny & Florence Merlevède, 2015. "Strong Invariance Principles with Rate for “Reverse” Martingale Differences and Applications," Journal of Theoretical Probability, Springer, vol. 28(1), pages 137-183, March.
    4. J. Dedecker & C. Prieur, 2004. "Coupling for τ-Dependent Sequences and Applications," Journal of Theoretical Probability, Springer, vol. 17(4), pages 861-885, October.
    5. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
    6. Bashtova, Elena & Shashkin, Alexey, 2022. "Strong Gaussian approximation for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1-18.
    7. Raluca Balan & Kulik, 2005. "Self-Normalized Weak Invariance Principle for Mixing Sequences," RePAd Working Paper Series lrsp-TRS417, Département des sciences administratives, UQO.
    8. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    9. Aiting Shen & Yu Zhang & Benqiong Xiao & Andrei Volodin, 2017. "Moment inequalities for m-negatively associated random variables and their applications," Statistical Papers, Springer, vol. 58(3), pages 911-928, September.
    10. Hafouta, Yeor, 2023. "An almost sure invariance principle for some classes of non-stationary mixing sequences," Statistics & Probability Letters, Elsevier, vol. 193(C).
    11. Aue, Alexander & Horváth, Lajos, 2004. "Delay time in sequential detection of change," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 221-231, April.
    12. Zhang, Li-Xin, 1996. "Complete convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 165-170, October.
    13. Kim, Tae-Sung & Ko, Mi-Hwa, 2008. "Complete moment convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 839-846, May.
    14. Florence Merlevède & Magda Peligrad, 2006. "On the Weak Invariance Principle for Stationary Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 19(3), pages 647-689, December.
    15. Aue, Alexander & Horvth, Lajos & Huskov, Marie, 2009. "Extreme value theory for stochastic integrals of Legendre polynomials," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1029-1043, May.
    16. Liu, Weidong & Lin, Zhengyan, 2009. "Strong approximation for a class of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 249-280, January.
    17. Chen, Pingyan & Gan, Shixin, 2008. "On moments of the maximum of normed partial sums of [rho] -mixing random variables," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1215-1221, August.
    18. Soo Sung, 2013. "On the strong convergence for weighted sums of ρ * -mixing random variables," Statistical Papers, Springer, vol. 54(3), pages 773-781, August.
    19. Su, Zhonggen, 2005. "The law of the iterated logarithm for character ratios," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 337-346, March.
    20. Wei Li & Pingyan Chen & Soo Hak Sung, 2016. "Complete Moment Convergence for Sung’s Type Weighted Sums of -Valued Random Elements," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:6:d:10.1007_s00362-017-0910-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.