IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i5p1029-1043.html
   My bibliography  Save this article

Extreme value theory for stochastic integrals of Legendre polynomials

Author

Listed:
  • Aue, Alexander
  • Horvth, Lajos
  • Huskov, Marie

Abstract

We study in this paper the extremal behavior of stochastic integrals of Legendre polynomial transforms with respect to Brownian motion. As the main results, we obtain the exact tail behavior of the supremum of these integrals taken over intervals [0,h] with h>0 fixed, and the limiting distribution of the supremum on intervals [0,T] as T-->[infinity]. We show further how this limit distribution is connected to the asymptotic of the maximally selected quasi-likelihood procedure that is used to detect changes at an unknown time in polynomial regression models. In an application to global near-surface temperatures, we demonstrate that the limit results presented in this paper perform well for real data sets.

Suggested Citation

  • Aue, Alexander & Horvth, Lajos & Huskov, Marie, 2009. "Extreme value theory for stochastic integrals of Legendre polynomials," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1029-1043, May.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:1029-1043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00217-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albin, J. M. P., 1992. "On the general law of iterated logarithm with application to selfsimilar processes and to Gaussian processes in n and Hilbert space," Stochastic Processes and their Applications, Elsevier, vol. 41(1), pages 1-31, May.
    2. Jandhyala, V. K. & MacNeill, I. B., 1989. "Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times," Stochastic Processes and their Applications, Elsevier, vol. 33(2), pages 309-323, December.
    3. Shao, Qi-Man, 1993. "Almost sure invariance principles for mixing sequences of random variables," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 319-334, November.
    4. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    5. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    6. Albin, J. M. P., 2001. "On extremes and streams of upcrossings," Stochastic Processes and their Applications, Elsevier, vol. 94(2), pages 271-300, August.
    7. V. K. Jandhyala & I. B. MacNeill, 1997. "Iterated Partial Sum Sequences of Regression Residuals and Tests for Changepoints with Continuity Constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 147-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Dȩbicki & Enkelejd Hashorva & Lanpeng Ji & Chengxiu Ling, 2015. "Extremes of order statistics of stationary processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 229-248, June.
    2. Lajos Horváth & William Pouliot & Shixuan Wang, 2017. "Detecting at-Most-m Changes in Linear Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 552-590, July.
    3. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    2. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    3. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    5. Atanu Ghoshray & Issam Malki & Javier Ordóñez, 2022. "On the long-run dynamics of income and wealth inequality," Empirical Economics, Springer, vol. 62(2), pages 375-408, February.
    6. Pierre Perron & Yohei Yamamoto, 2022. "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence," Empirical Economics, Springer, vol. 62(3), pages 1193-1218, March.
    7. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    8. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    9. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    10. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    11. Bada, O. & Kneip, A. & Liebl, D. & Mensinger, T. & Gualtieri, J. & Sickles, R.C., 2022. "A wavelet method for panel models with jump discontinuities in the parameters," Journal of Econometrics, Elsevier, vol. 226(2), pages 399-422.
    12. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    13. Armand, Alex & Carneiro, Pedro & Locatelli, Andrea & Mihreteab, Selam & Keating, Joseph, 2017. "Do public health interventions crowd out private health investments? Malaria control policies in Eritrea," Labour Economics, Elsevier, vol. 45(C), pages 107-115.
    14. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    15. Boldea, Otilia & Cornea-Madeira, Adriana & Hall, Alastair R., 2019. "Bootstrapping structural change tests," Journal of Econometrics, Elsevier, vol. 213(2), pages 359-397.
    16. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    17. Raffaella Giacomini & Barbara Rossi, 2016. "Model Comparisons In Unstable Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 369-392, May.
    18. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    19. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    20. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:5:p:1029-1043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.